Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to download, process, and analyze data from the International Monetary Fund's World Economic Outlook (WEO) database <https://www.imf.org/en/Publications/SPROLLs/world-economic-outlook-databases>. Functions support downloading complete WEO releases, accessing specific economic indicators for selected countries, and listing available data.
This package implements the integrative conditional autoregressive horseshoe model discussed in Jendoubi, T., Ebbels, T.M. Integrative analysis of time course metabolic data and biomarker discovery. BMC Bioinformatics 21, 11 (2020) <doi:10.1186/s12859-019-3333-0>. The model consists in three levels: Metabolic pathways level modeling interdependencies between variables via a conditional auto-regressive (CAR) component, integrative analysis level to identify potential associations between heterogeneous omic variables via a Horseshoe prior and experimental design level to capture experimental design conditions through a mixed-effects model. The package also provides functions to simulate data from the model, construct pathway matrices, post process and plot model parameters.
Integrated B-spline function.
Develops a General Equilibrium (GE) Model, which estimates key variables such as wages, the number of residents and workers, the prices of the floor space, and its distribution between commercial and residential use, as in Ahlfeldt et al., (2015) <doi:10.3982/ECTA10876>. By doing so, the model allows understanding the economic influence of different urban policies.
This package implements the Information Matrix test for regression models following Cameron, A. C., & Trivedi, P. K. (1990) <https://cameron.econ.ucdavis.edu/research/imtest_impliedalternatives_ucdwp372.pdf> Decomposes the test into components for heteroscedasticity, skewness, and kurtosis to diagnose specific forms of misspecification. Provides both overall and component-wise statistics for model assessment.
Geostatistical interpolation has traditionally been done by manually fitting a variogram and then interpolating. Here, we introduce classes and methods that can do this interpolation automatically. Pebesma et al (2010) gives an overview of the methods behind and possible usage <doi:10.1016/j.cageo.2010.03.019>.
Implementations of the weighted Kozachenko-Leonenko entropy estimator and independence tests based on this estimator, (Kozachenko and Leonenko (1987) <http://mi.mathnet.ru/eng/ppi797>). Also includes a goodness-of-fit test for a linear model which is an independence test between covariates and errors.
This package provides tools to extract information from the Intergovernmental Organizations ('IGO') Database (v3), provided by the Correlates of War Project <https://correlatesofwar.org/>. See also Pevehouse, J. C. et al. (2020) <doi:10.1177/0022343319881175>.
This package provides a systematic biology tool was developed to identify dysregulated miRNAs via a miRNA-miRNA interaction network. IDMIR first constructed a weighted miRNA interaction network through integrating miRNA-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific-disease context, and then, it used a network propagation algorithm on the network to identify significantly dysregulated miRNAs.
Analysis of the initialization for numerical optimization of real-valued functions, particularly likelihood functions of statistical models. See <https://loelschlaeger.de/ino/> for more details.
This package contains some important regression methods for interval-valued variables. For each method, it is available the fitted values, residuals and some goodness-of-fit measures.
This package provides coefficients of interrater reliability that are generalized to cope with randomly incomplete (i.e. unbalanced) datasets without any imputation of missing values or any (row-wise or column-wise) omissions of actually available data. Applied to complete (balanced) datasets, these generalizations yield the same results as the common procedures, namely the Intraclass Correlation according to McGraw & Wong (1996) \doi10.1037/1082-989X.1.1.30 and the Coefficient of Concordance according to Kendall & Babington Smith (1939) \doi10.1214/aoms/1177732186.
Interpretation methods for analyzing the behavior and individual predictions of modern neural networks in a three-step procedure: Converting the model, running the interpretation method, and visualizing the results. Implemented methods are, e.g., Connection Weights described by Olden et al. (2004) <doi:10.1016/j.ecolmodel.2004.03.013>, layer-wise relevance propagation ('LRP') described by Bach et al. (2015) <doi:10.1371/journal.pone.0130140>, deep learning important features ('DeepLIFT') described by Shrikumar et al. (2017) <doi:10.48550/arXiv.1704.02685> and gradient-based methods like SmoothGrad described by Smilkov et al. (2017) <doi:10.48550/arXiv.1706.03825>, Gradient x Input or Vanilla Gradient'. Details can be found in the accompanying scientific paper: Koenen & Wright (2024, Journal of Statistical Software, <doi:10.18637/jss.v111.i08>).
This package provides functions to make inference about the standardized mortality ratio (SMR) when evaluating the effect of a screening program. The package is based on methods described in Sasieni (2003) <doi: 10.1097/00001648-200301000-00026> and Talbot et al. (2011) <doi: 10.1002/sim.4334>.
Instrumental variable (IV) estimators for homogeneous and heterogeneous treatment effects with efficient machine learning instruments. The estimators are based on double/debiased machine learning allowing for nonlinear and potentially high-dimensional control variables. Details can be found in Scheidegger, Guo and Bühlmann (2025) "Inference for heterogeneous treatment effects with efficient instruments and machine learning" <doi:10.48550/arXiv.2503.03530>.
Estimates weights to make a continuous-valued exposure statistically independent of a vector of pre-treatment covariates using the method proposed in Huling, Greifer, and Chen (2021) <arxiv:2107.07086>.
This package provides native R access to Interactive Brokers Trader Workstation API.
This package provides an R version of the InterVA4 software (<http://www.interva.net>) for coding cause of death from verbal autopsies. It also provides simple graphical representation of individual and population level statistics.
This package provides classes and functions for working with IP (Internet Protocol) addresses and networks, inspired by the Python ipaddress module. Offers full support for both IPv4 and IPv6 (Internet Protocol versions 4 and 6) address spaces. It is specifically designed to work well with the tidyverse'.
For a single variable, the IVY Plot stacks tied values in the form of leaflets. Five leaflets join to form a leaf. Leaves are stacked vertically. At most twenty leaves are shown; For high frequency, each leaflet may represent more than one observation with multiplicity declared in the subtitle.
This package provides a collection of datasets containing a variety of in vitro toxicokinetic measurements including -- but not limited to -- chemical fraction unbound in the presence of plasma (f_up), intrinsic hepatic clearance (Clint, uL/min/million hepatocytes), and membrane permeability for oral absorption (Caco2). The datasets provided by the package were processed and analyzed with the companion invitroTKstats package.
Estimate the proportions of the null and the reproducibility and non-reproducibility of the signal group for the input data set. The Bayes factor calculation and EM (Expectation Maximization) algorithm procedures are also included.
Implementation of the information matrix test for generalized partial credit models.
This package provides a collection of wrapper functions for common variable and dataset manipulation workflows primarily used by iNZight', a graphical user interface providing easy exploration and visualisation of data for students of statistics, available in both desktop and online versions. Additionally, many of the functions return the tidyverse code used to obtain the result in an effort to bridge the gap between GUI and coding.