Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for testing randomness for a univariate time series with arbitrary distribution (discrete, continuous, mixture of both types) and for testing independence between random variables with arbitrary distributions. The test statistics are based on the multilinear empirical copula and multipliers are used to compute P-values. The test of independence between random variables appeared in Genest, Nešlehová, Rémillard & Murphy (2019) and the test of randomness appeared in Nasri (2022).
This is an add-on package to the monobin package that simplifies its use. It provides shiny-based user interface (UI) that is especially handy for less experienced R users as well as for those who intend to perform quick scanning of numeric risk factors when building credit rating models. The additional functions implemented in monobinShiny that do no exist in monobin package are: descriptive statistics, special case and outliers imputation. The function descriptive statistics is exported and can be used in R sessions independently from the user interface, while special case and outlier imputation functions are written to be used with shiny UI.
Compute similarities and distances between marked point processes.
Shiny web application to run meta-analyses. Essentially a graphical front-end to package meta for R. Can be useful as an educational tool, and for quickly analyzing and sharing meta-analyses. Provides output to quickly fill in GRADE (Grading of Recommendations, Assessment, Development and Evaluations) Summary-of-Findings tables. Importantly, it allows further processing of the results inside R, in case more specific analyses are needed.
Multiple Imputation has been shown to be a flexible method to impute missing values by Van Buuren (2007) <doi:10.1177/0962280206074463>. Expanding on this, random forests have been shown to be an accurate model by Stekhoven and Buhlmann <arXiv:1105.0828> to impute missing values in datasets. They have the added benefits of returning out of bag error and variable importance estimates, as well as being simple to run in parallel.
Detect outlying observations in functional data sets based on the minimum regularized covariance trace (MRCT) estimator. Includes implementation of Oguamalam et al. (2023) <arXiv:2307.13509>.
The MSiP is a computational approach to predict protein-protein interactions from large-scale affinity purification mass spectrometry (AP-MS) data. This approach includes both spoke and matrix models for interpreting AP-MS data in a network context. The "spoke" model considers only bait-prey interactions, whereas the "matrix" model assumes that each of the identified proteins (baits and prey) in a given AP-MS experiment interacts with each of the others. The spoke model has a high false-negative rate, whereas the matrix model has a high false-positive rate. Although, both statistical models have merits, a combination of both models has shown to increase the performance of machine learning classifiers in terms of their capabilities in discrimination between true and false positive interactions.
Framework for the Item Response Theory analysis of dichotomous and ordinal polytomous outcomes under the assumption of multidimensionality and discreteness of the latent traits. The fitting algorithms allow for missing responses and for different item parameterizations and are based on the Expectation-Maximization paradigm. Individual covariates affecting the class weights may be included in the new version (since 2.1).
The midasml package implements estimation and prediction methods for high-dimensional mixed-frequency (MIDAS) time-series and panel data regression models. The regularized MIDAS models are estimated using orthogonal (e.g. Legendre) polynomials and sparse-group LASSO (sg-LASSO) estimator. For more information on the midasml approach see Babii, Ghysels, and Striaukas (2021, JBES forthcoming) <doi:10.1080/07350015.2021.1899933>. The package is equipped with the fast implementation of the sg-LASSO estimator by means of proximal block coordinate descent. High-dimensional mixed frequency time-series data can also be easily manipulated with functions provided in the package.
Fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or party choice by voters in electoral studies. The MNP package can also fit the model with different choice sets for each individual, and complete or partial individual choice orderings of the available alternatives from the choice set. The estimation is based on the efficient marginal data augmentation algorithm that is developed by Imai and van Dyk (2005). "A Bayesian Analysis of the Multinomial Probit Model Using the Data Augmentation." Journal of Econometrics, Vol. 124, No. 2 (February), pp. 311-334. <doi:10.1016/j.jeconom.2004.02.002> Detailed examples are given in Imai and van Dyk (2005). "MNP: R Package for Fitting the Multinomial Probit Model." Journal of Statistical Software, Vol. 14, No. 3 (May), pp. 1-32. <doi:10.18637/jss.v014.i03>.
Package for processing downloaded MODIS Surface reflectance Product HDF files. Specifically, MOD09 surface reflectance product files, and the associated MOD03 geolocation files (for MODIS-TERRA). The package will be most effective if the user installs MRTSwath (MODIS Reprojection Tool for swath products; <https://lpdaac.usgs.gov/tools/modis_reprojection_tool_swath>, and adds the directory with the MRTSwath executable to the default R PATH by editing ~/.Rprofile.
This package provides tools for estimating multivariate probit models, calculating conditional and unconditional expectations, and calculating marginal effects on conditional and unconditional expectations.
Handling the microclimatic data in R. The myClim workflow begins at the reading data primary from microclimatic dataloggers, but can be also reading of meteorological station data from files. Cleaning time step, time zone settings and metadata collecting is the next step of the work flow. With myClim tools one can crop, join, downscale, and convert microclimatic data formats, sort them into localities, request descriptive characteristics and compute microclimatic variables. Handy plotting functions are provided with smart defaults.
First- and higher-order likelihood inference in meta-analysis and meta-regression models.
Clustering of data under a non-ignorable missingness mechanism. Clustering is achieved by a semi-parametric mixture model and missingness is managed by using the pattern-mixture approach. More details of the approach are available in Du Roy de Chaumaray et al. (2020) <arXiv:2009.07662>.
This package is deprecated. Please use redatamx instead. Provides an API to work with Redatam (see <https://redatam.org>) databases in both formats: RXDB (new format) and DICX (old format) and running Redatam programs written in SPC language. It's a wrapper around Redatam core and provides functions to open/close a database (redatam_open()/redatam_close()), list entities and variables from the database (redatam_entities(), redatam_variables()) and execute a SPC program and gets the results as data frames (redatam_query(), redatam_run()).
This package performs Modal Clustering (MAC) including Hierarchical Modal Clustering (HMAC) along with their parallel implementation (PHMAC) over several processors. These model-based non-parametric clustering techniques can extract clusters in very high dimensions with arbitrary density shapes. By default clustering is performed over several resolutions and the results are summarised as a hierarchical tree. Associated plot functions are also provided. There is a package vignette that provides many examples. This version adheres to CRAN policy of not spanning more than two child processes by default.
Market area models are used to analyze and predict store choices and market areas concerning retail and service locations. This package implements two market area models (Huff Model, Multiplicative Competitive Interaction Model) into R, while the emphases lie on 1.) fitting these models based on empirical data via OLS regression and nonlinear techniques and 2.) data preparation and processing (esp. interaction matrices and data preparation for the MCI Model).
This package implements a high dimensional mediation analysis algorithm using Local False Discovery Rates. The methodology is described in Roy and Zhang (2024) <doi:10.48550/arXiv.2402.13933>.
Extract cross sections from long bone meshes at specified intervals along the diaphysis. Calculate two and three-dimensional morphometric maps, cross-sectional geometric parameters, and semilandmarks on the periosteal and endosteal contours of each cross section.
This package provides a generalization of the Synth package that is designed for data at a more granular level (e.g., micro-level). Provides functions to construct weights (including propensity score-type weights) and run analyses for synthetic control methods with micro- and meso-level data; see Robbins, Saunders, and Kilmer (2017) <doi:10.1080/01621459.2016.1213634> and Robbins and Davenport (2021) <doi:10.18637/jss.v097.i02>.
Complements the book "Using R for Modelling and Quantitative Methods in Fisheries" ISBN 9780367469894, published in 2021 by Chapman & Hall in their "Using R series". There are numerous functions and data-sets that are used in the book's many practical examples.
This package provides methods for analyzing and using quartets displayed on a collection of gene trees, primarily to make inferences about the species tree or network under the multi-species coalescent model. These include quartet hypothesis tests for the model, as developed by Mitchell et al. (2019) <doi:10.1214/19-EJS1576>, simplex plots of quartet concordance factors as presented by Allman et al. (2020) <doi:10.1101/2020.02.13.948083>, species tree inference methods based on quartet distances of Rhodes (2019) <doi:10.1109/TCBB.2019.2917204> and Yourdkhani and Rhodes (2019) <doi:10.1007/s11538-020-00773-4>, the NANUQ algorithm for inference of level-1 species networks of Allman et al. (2019) <doi:10.1186/s13015-019-0159-2>, the TINNIK algorithm for inference of the tree of blobs of an arbitrary network of Allman et al.(2022) <doi:10.1007/s00285-022-01838-9>, and NANUQ+ routines for resolving multifurcations in the tree of blobs to cycles as in Allman et al.(2024) (forthcoming). Software announcement by Rhodes et al. (2020) <doi:10.1093/bioinformatics/btaa868>.
This package provides users to call MATLAB from using the "system" command. Allows users to submit lines of code or MATLAB m files. This is in comparison to R.matlab', which creates a MATLAB server.