Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Analise multivariada, tendo funcoes que executam analise de correspondencia simples (CA) e multipla (MCA), analise de componentes principais (PCA), analise de correlacao canonica (CCA), analise fatorial (FA), escalonamento multidimensional (MDS), analise discriminante linear (LDA) e quadratica (QDA), analise de cluster hierarquico e nao hierarquico, regressao linear simples e multipla, analise de multiplos fatores (MFA) para dados quantitativos, qualitativos, de frequencia (MFACT) e dados mistos, biplot, scatter plot, projection pursuit (PP), grant tour e outras funcoes uteis para a analise multivariada.
An efficient implementation of the MCPMod (Multiple Comparisons and Modeling) method to support a simulation-based design and analysis of dose-finding trials with normally distributed, binary and count endpoints (Bretz et al. (2005) <doi:10.1111/j.1541-0420.2005.00344.x>).
Exploratory data analysis and manipulation functions for multi- label data sets along with an interactive Shiny application to ease their use.
Evaluate whether a microbiome sample is a mixture of two samples, by fitting a model for the number of read counts as a function of single nucleotide polymorphism (SNP) allele and the genotypes of two potential source samples. Lobo et al. (2021) <doi:10.1093/g3journal/jkab308>.
Conduct multi-locus genome-wide association study under the framework of multi-locus random-SNP-effect mixed linear model (mrMLM). First, each marker on the genome is scanned. Bonferroni correction is replaced by a less stringent selection criterion for significant test. Then, all the markers that are potentially associated with the trait are included in a multi-locus genetic model, their effects are estimated by empirical Bayes, and all the nonzero effects were further identified by likelihood ratio test for significant QTL. The program may run on a desktop or laptop computers. If marker genotypes in association mapping population are almost homozygous, these methods in this software are very effective. If there are many heterozygous marker genotypes, the IIIVmrMLM software is recommended. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2018, <doi:10.1093/bib/bbw145>), and Li M, Zhang YW, Zhang ZC, Xiang Y, Liu MH, Zhou YH, Zuo JF, Zhang HQ, Chen Y, Zhang YM (2022, <doi:10.1016/j.molp.2022.02.012>).
Monolix is a tool for running mixed effects model using saem'. This tool allows you to convert Monolix models to rxode2 (Wang, Hallow and James (2016) <doi:10.1002/psp4.12052>) using the form compatible with nlmixr2 (Fidler et al (2019) <doi:10.1002/psp4.12445>). If available, the rxode2 model will read in the Monolix data and compare the simulation for the population model individual model and residual model to immediately show how well the translation is performing. This saves the model development time for people who are creating an rxode2 model manually. Additionally, this package reads in all the information to allow simulation with uncertainty (that is the number of observations, the number of subjects, and the covariance matrix) with a rxode2 model. This is complementary to the babelmixr2 package that translates nlmixr2 models to Monolix and can convert the objects converted from monolix2rx to a full nlmixr2 fit. While not required, you can get/install the lixoftConnectors package in the Monolix installation, as described at the following url <https://monolixsuite.slp-software.com/r-functions/2024R1/installation-and-initialization>. When lixoftConnectors is available, Monolix can be used to load its model library instead manually setting up text files (which only works with old versions of Monolix').
An aggressive dimensionality reduction and network estimation technique for a high-dimensional Gaussian graphical model (GGM). Please refer to: Efficient Dimensionality Reduction for High-Dimensional Network Estimation, Safiye Celik, Benjamin A. Logsdon, Su-In Lee, Proceedings of The 31st International Conference on Machine Learning, 2014, p. 1953--1961.
R functions for the estimation and eigen-decomposition of multivariate autoregressive models.
This package provides a modified function bic.glm of the BMA package that can be applied to multinomial logit (MNL) data. The data is converted to binary logit using the Begg & Gray approximation. The package also contains functions for maximum likelihood estimation of MNL.
Multivariate Information-based Inductive Causation, better known by its acronym MIIC, is a causal discovery method, based on information theory principles, which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables. Starting from a complete graph, the method iteratively removes dispensable edges, by uncovering significant information contributions from indirect paths, and assesses edge-specific confidences from randomization of available data. The remaining edges are then oriented based on the signature of causality in observational data. The recent more interpretable MIIC extension (iMIIC) further distinguishes genuine causes from putative and latent causal effects, while scaling to very large datasets (hundreds of thousands of samples). Since the version 2.0, MIIC also includes a temporal mode (tMIIC) to learn temporal causal graphs from stationary time series data. MIIC has been applied to a wide range of biological and biomedical data, such as single cell gene expression data, genomic alterations in tumors, live-cell time-lapse imaging data (CausalXtract), as well as medical records of patients. MIIC brings unique insights based on causal interpretation and could be used in a broad range of other data science domains (technology, climatology, economy, ...). For more information, you can refer to: Simon et al., eLife 2024, <doi:10.1101/2024.02.06.579177>, Ribeiro-Dantas et al., iScience 2024, <doi:10.1016/j.isci.2024.109736>, Cabeli et al., NeurIPS 2021, <https://why21.causalai.net/papers/WHY21_24.pdf>, Cabeli et al., Comput. Biol. 2020, <doi:10.1371/journal.pcbi.1007866>, Li et al., NeurIPS 2019, <https://papers.nips.cc/paper/9573-constraint-based-causal-structure-learning-with-consistent-separating-sets>, Verny et al., PLoS Comput. Biol. 2017, <doi:10.1371/journal.pcbi.1005662>, Affeldt et al., UAI 2015, <https://auai.org/uai2015/proceedings/papers/293.pdf>. Changes from the previous 1.5.3 release on CRAN are available at <https://github.com/miicTeam/miic_R_package/blob/master/NEWS.md>.
Multivariate estimation and testing, currently a package for testing parametric data. To deal with parametric data, various multivariate normality tests and outlier detection are performed and visualized using the ggplot2 package. Homogeneity tests for covariance matrices are also possible, as well as the Hotelling's T-square test and the multivariate analysis of variance test. We are exploring additional tests and visualization techniques, such as profile analysis and randomized complete block design, to be made available in the future and making them easily accessible to users.
Implementations of MOSUM-based statistical procedures and algorithms for detecting multiple changes in the mean. This comprises the MOSUM procedure for estimating multiple mean changes from Eichinger and Kirch (2018) <doi:10.3150/16-BEJ887> and the multiscale algorithmic extension from Cho and Kirch (2022) <doi:10.1007/s10463-021-00811-5>, as well as the bootstrap procedure for generating confidence intervals about the locations of change points as proposed in Cho and Kirch (2022) <doi:10.1016/j.csda.2022.107552>. See also Meier, Kirch and Cho (2021) <doi:10.18637/jss.v097.i08> which accompanies the R package.
An S4 update of the mefa package using sparse matrices for enhanced efficiency. Sparse array-like objects are supported via lists of sparse matrices.
Generate the optimal maximin distance, minimax distance (only for low dimensions), and maximum projection designs within the class of Latin hypercube designs efficiently for computer experiments. Generate Pareto front optimal designs for each two of the three criteria and all the three criteria within the class of Latin hypercube designs efficiently. Provide criterion computing functions. References of this package can be found in Morris, M. D. and Mitchell, T. J. (1995) <doi:10.1016/0378-3758(94)00035-T>, Lu Lu and Christine M. Anderson-CookTimothy J. Robinson (2011) <doi:10.1198/Tech.2011.10087>, Joseph, V. R., Gul, E., and Ba, S. (2015) <doi:10.1093/biomet/asv002>.
This package contains auxiliary routines for influx software. This packages is not intended to be used directly. Influx was published here: Sokol et al. (2012) <doi:10.1093/bioinformatics/btr716>.
An approach to identify microbiome biomarker for time to event data by discovering microbiome for predicting survival and classifying subjects into risk groups. Classifiers are constructed as a linear combination of important microbiome and treatment effects if necessary. Several methods were implemented to estimate the microbiome risk score such as the LASSO method by Robert Tibshirani (1998) <doi:10.1002/(SICI)1097-0258(19970228)16:4%3C385::AID-SIM380%3E3.0.CO;2-3>, Elastic net approach by Hui Zou and Trevor Hastie (2005) <doi:10.1111/j.1467-9868.2005.00503.x>, supervised principle component analysis of Wold Svante et al. (1987) <doi:10.1016/0169-7439(87)80084-9>, and supervised partial least squares analysis by Inge S. Helland <https://www.jstor.org/stable/4616159>. Sensitivity analysis on the quantile used for the classification can also be accessed to check the deviation of the classification group based on the quantile specified. Large scale cross validation can be performed in order to investigate the mostly selected microbiome and for internal validation. During the evaluation process, validation is accessed using the hazard ratios (HR) distribution of the test set and inference is mainly based on resampling and permutations technique.
Model selection and averaging for regression and mixtures, inclusing Bayesian model selection and information criteria (BIC, EBIC, AIC, GIC).
Fits multiple variable mixtures of various parametric proportional hazard models using the EM-Algorithm. Proportionality restrictions can be imposed on the latent groups and/or on the variables. Several survival distributions can be specified. Missing values and censored values are allowed. Independence is assumed over the single variables.
Estimation of the survivor function for interval censored time-to-event data subject to misclassification using nonparametric maximum likelihood estimation, implementing the methods of Titman (2017) <doi:10.1007/s11222-016-9705-7>. Misclassification probabilities can either be specified as fixed or estimated. Models with time dependent misclassification may also be fitted.
Computation and visualization of matrix correlation coefficients. The main method is the Similarity of Matrices Index, while various related measures like r1, r2, r3, r4, Yanai's GCD, RV, RV2, adjusted RV, Rozeboom's linear correlation and Coxhead's coefficient are included for comparison and flexibility.
This package provides a toolkit containing statistical analysis models motivated by multivariate forms of the Conway-Maxwell-Poisson (COM-Poisson) distribution for flexible modeling of multivariate count data, especially in the presence of data dispersion. Currently the package only supports bivariate data, via the bivariate COM-Poisson distribution described in Sellers et al. (2016) <doi:10.1016/j.jmva.2016.04.007>. Future development will extend the package to higher-dimensional data.
This package provides functions for multivariate and propensity score matching and for finding optimal balance based on a genetic search algorithm. A variety of univariate and multivariate metrics to determine if balance has been obtained are also provided. For details, see the paper by Jasjeet Sekhon (2007, <doi:10.18637/jss.v042.i07>).
Defines predict function that transforms output from a Tweedie Generalized Linear Mixed Model (using glmmTMB'), Generalized Additive Model (using mgcv'), or spatio-temporal Generalized Linear Mixed Model (using package tinyVAST'), and returns predicted proportions (and standard errors) across a grouping variable from an equivalent multivariate-logit Tweedie model. These predicted proportions can then be used for standard plotting and diagnostics. See Thorson et al. 2022 <doi:10.1002/ecy.3637>.
An easy-to-use workflow that provides tools to create, update and fill literature matrices commonly used in research, specifically epidemiology and health sciences research. The project is born out of need as an easyâ toâ use tool for my research methods classes.