Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Generalized Odds Rate Mixture Cure (GORMC) model is a flexible model of fitting survival data with a cure fraction, including the Proportional Hazards Mixture Cure (PHMC) model and the Proportional Odds Mixture Cure Model as special cases. This package fit the GORMC model with interval censored data.
This package provides tools for interacting with the geographic name resolution service ('GNRS') API <https://github.com/ojalaquellueva/gnrs> and associated functionality. The GNRS is a batch application for resolving & standardizing political division names against standard name in the geonames database <http://www.geonames.org/>. The GNRS resolves political division names at three levels: country, state/province and county/parish. Resolution is performed in a series of steps, beginning with direct matching to standard names, followed by direct matching to alternate names in different languages, followed by direct matching to standard codes (such as ISO and FIPS codes). If direct matching fails, the GNRS attempts to match to standard and then alternate names using fuzzy matching, but does not perform fuzzing matching of political division codes. The GNRS works down the political division hierarchy, stopping at the current level if all matches fail. In other words, if a country cannot be matched, the GNRS does not attempt to match state or county.
This package provides classes and functions to calculate various distance measures and routes in heterogeneous geographic spaces represented as grids. The package implements measures to model dispersal histories first presented by van Etten and Hijmans (2010) <doi:10.1371/journal.pone.0012060>. Least-cost distances as well as more complex distances based on (constrained) random walks can be calculated. The distances implemented in the package are used in geographical genetics, accessibility indicators, and may also have applications in other fields of geospatial analysis.
Find all hierarchical models of specified generalized linear model with information criterion (AIC, BIC, or AICc) within specified cutoff of minimum value. Alternatively, find all such graphical models. Use branch and bound algorithm so we do not have to fit all models.
This package provides tools for assessing and diagnosing convergence of Markov Chain Monte Carlo simulations, as well as for graphically display results from full MCMC analysis. The package also facilitates the graphical interpretation of models by providing flexible functions to plot the results against observed variables, and functions to work with hierarchical/multilevel batches of parameters (Fernández-i-Marà n, 2016 <doi:10.18637/jss.v070.i09>).
Association analysis between categorical variables using the Goodman and Kruskal tau measure. This asymmetric association measure allows the detection of asymmetric relations between categorical variables (e.g., one variable obtained by re-grouping another).
The gasanalyzer R package offers methods for importing, preprocessing, and analyzing data related to photosynthetic characteristics (gas exchange, chlorophyll fluorescence and isotope ratios). It translates variable names into a standard format, and can recalculate derived, physiological quantities using imported or predefined equations. The package also allows users to assess the sensitivity of their results to different assumptions used in the calculations. See also Tholen (2024) <doi:10.1093/aobpla/plae035>.
Understanding spatial association is essential for spatial statistical inference, including factor exploration and spatial prediction. Geographically optimal similarity (GOS) model is an effective method for spatial prediction, as described in Yongze Song (2022) <doi:10.1007/s11004-022-10036-8>. GOS was developed based on the geographical similarity principle, as described in Axing Zhu (2018) <doi:10.1080/19475683.2018.1534890>. GOS has advantages in more accurate spatial prediction using fewer samples and critically reduced prediction uncertainty.
Simulates from discrete and continuous target distributions using geometric Metropolis-Hastings (MH) algorithms. Users specify the target distribution by an R function that evaluates the log un-normalized pdf or pmf. The package also contains a function implementing a specific geometric MH algorithm for performing high dimensional Bayesian variable selection.
This package provides statistical transformations for plotting empirical ordinary Lorenz curve (Lorenz 1905) <doi:10.2307/2276207> and generalized Lorenz curve (Shorrocks 1983) <doi:10.2307/2554117>.
Set of functions designed to solve inverse problems. The direct problem is used to calculate a cost function to be minimized. Here are listed some papers using Inverse Problems solvers and sensitivity analysis: (Jader Lugon Jr.; Antonio J. Silva Neto 2011) <doi:10.1590/S1678-58782011000400003>. (Jader Lugon Jr.; Antonio J. Silva Neto; Pedro P.G.W. Rodrigues 2008) <doi:10.1080/17415970802082864>. (Jader Lugon Jr.; Antonio J. Silva Neto; Cesar C. Santana 2008) <doi:10.1080/17415970802082922>.
Offers a generalization of the scatterplot matrix based on the recognition that most datasets include both categorical and quantitative information. Traditional grids of scatterplots often obscure important features of the data when one or more variables are categorical but coded as numerical. The generalized pairs plot offers a range of displays of paired combinations of categorical and quantitative variables. Emerson et al. (2013) <DOI:10.1080/10618600.2012.694762>.
The aim of this package is to offer more variability of graphics based on the self-organizing maps.
Spatio-temporal radial basis functions (optimization, prediction and cross-validation), summary statistics from cross-validation, Adjusting distance-based linear regression model and generation of the principal coordinates of a new individual from Gower's distance.
This package provides a post-estimation method for categorical response models (CRM). Inputs from objects of class serp(), clm(), polr(), multinom(), mlogit(), vglm() and glm() are currently supported. Available tests include the Hosmer-Lemeshow tests for the binary, multinomial and ordinal logistic regression; the Lipsitz and the Pulkstenis-Robinson tests for the ordinal models. The proportional odds, adjacent-category, and constrained continuation-ratio models are particularly supported at ordinal level. Tests for the proportional odds assumptions in ordinal models are also possible with the Brant and the Likelihood-Ratio tests. Moreover, several summary measures of predictive strength (Pseudo R-squared), and some useful error metrics, including, the brier score, misclassification rate and logloss are also available for the binary, multinomial and ordinal models. Ugba, E. R. and Gertheiss, J. (2018) <http://www.statmod.org/workshops_archive_proceedings_2018.html>.
Can be used for optimal transport between two-dimensional grids with respect to separable cost functions of l^p form. It utilizes the Frank-Wolfe algorithm to approximate so-called pivot measures: One-dimensional transport plans that fully describe the full transport, see G. Auricchio (2023) <doi:10.4171/RLM/1026>. For these, it offers methods for visualization and to extract the corresponding transport plans and costs. Additionally, related functions for one-dimensional optimal transport are available.
This package provides diagnostic graphic tools for GLMs, beta-binomial regression model (estimated by VGAM package), beta regression model (estimated by betareg package) and negative binomial regression model (estimated by MASS package). Since most of functions implemented in glmxdiag already exist in other packages, the aim is to provide the user unique functions that work on almost all regression models previously specified. Details about some of the implemented functions can be found in Brown (1992) <doi:10.2307/2347617>, Dunn and Smyth (1996) <doi:10.2307/1390802>, O'Hara Hines and Carter (1993) <doi:10.2307/2347405>, Wang (1985) <doi:10.2307/1269708>.
This package provides a not-so-comprehensive list of methods for estimating graphon, a symmetric measurable function, from a single or multiple of observed networks. For a detailed introduction on graphon and popular estimation techniques, see the paper by Orbanz, P. and Roy, D.M.(2014) <doi:10.1109/TPAMI.2014.2334607>. It also contains several auxiliary functions for generating sample networks using various network models and graphons.
Generates a file, containing the main scientific references, prepared to be automatically inserted into an academic paper. The articles present in the list are chosen from the main references generated, by function principal_lister(), of the package bibliorefer'. The generated file contains the list of metadata of the principal references in BibTex format. Massimo Aria, Corrado Cuccurullo. (2017) <doi:10.1016/j.joi.2017.08.007>. Caibo Zhou, Wenyan Song. (2021) <doi:10.1016/j.jclepro.2021.126943>. Hamid DerviÅ . (2019) <doi:10.5530/jscires.8.3.32>.
Decision curve analysis is a method for evaluating and comparing prediction models that incorporates clinical consequences, requires only the data set on which the models are tested, and can be applied to models that have either continuous or dichotomous results. The ggscidca package adds coloured bars of discriminant relevance to the traditional decision curve. Improved practicality and aesthetics. This method was described by Balachandran VP (2015) <doi:10.1016/S1470-2045(14)71116-7>.
This package provides tools to interact nicely with the Genius API <https://docs.genius.com/>. Search hosted content, extract associated metadata and retrieve lyrics with ease.
Allows users to quickly and easily generate fake data containing Personally Identifiable Information (PII) through convenience functions.
Wrappers for functions in the gRain package to emulate some RHugin functionality, allowing the building of Bayesian networks consisting on discrete chance nodes incrementally, through adding nodes, edges and conditional probability tables, the setting of evidence, both hard (boolean) or soft (likelihoods), querying marginal probabilities and normalizing constants, and generating sets of high-probability configurations. Computations will typically not be so fast as they are with RHugin', but this package should assist users without access to Hugin to use code written to use RHugin'.
This package provides convenient wrapper functions around the glue library for common string interpolation tasks. The package simplifies the process of combining glue string templating with common R functions like message(), warning(), stop(), print(), cat(), and file writing operations. Instead of manually calling glue() and then passing the result to these functions, glueDo provides direct wrapper functions that handle both steps in a single call. This is particularly useful for logging, error handling, and formatted output in R scripts and packages. The main reference for the underlying glue package is Hester and Bryan (2022) <https://CRAN.R-project.org/package=glue>.