Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
These are two-sample tests for categorical data utilizing similarity information among the categories. They are useful when there is underlying structure on the categories.
This package provides a framework and functions to create MOODLE quizzes. GIFTr takes dataframe of questions of four types: multiple choices, numerical, true or false and short answer questions, and exports a text file formatted in MOODLE GIFT format. You can prepare a spreadsheet in any software and import it into R to generate any number of questions with HTML', markdown and LaTeX support.
Fits geographically weighted regression (GWR) models and has tools to diagnose and remediate collinearity in the GWR models. Also fits geographically weighted ridge regression (GWRR) and geographically weighted lasso (GWL) models. See Wheeler (2009) <doi:10.1068/a40256> and Wheeler (2007) <doi:10.1068/a38325> for more details.
This package provides a compilation of tools to complete common tasks for studying gerrymandering. This focuses on the geographic tool side of common problems, such as linking different levels of spatial units or estimating how to break up units. Functions exist for creating redistricting-focused data for the US.
The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>.
An ensemble of algorithms that enable the clustering of networks and data matrices (such as counts, categorical or continuous) with different type of generative models. Model selection and clustering is performed in combination by optimizing the Integrated Classification Likelihood (which is equivalent to minimizing the description length). Several models are available such as: Stochastic Block Model, degree corrected Stochastic Block Model, Mixtures of Multinomial, Latent Block Model. The optimization is performed thanks to a combination of greedy local search and a genetic algorithm (see <arXiv:2002:11577> for more details).
Toolbox for various enrichment analysis methods and quantification of uncertainty of gene sets, Schmid et al. (2016) <doi:10.1093/bioinformatics/btw030>.
GitHub apps provide a powerful way to manage fine grained programmatic access to specific git repositories, without having to create dummy users, and which are safer than a personal access token for automated tasks. This package extends the gh package to let you authenticate and interact with GitHub <https://docs.github.com/en/rest/overview> in R as an app.
GEE estimation of the parameters in mean structures with possible correlation between the outcomes. User-specified mean link and variance functions are allowed, along with observation weighting. The M in the name geeM is meant to emphasize the use of the Matrix package, which allows for an implementation based fully in R.
Calculates and analyzes six measures of geographic range from a set of longitudinal and latitudinal occurrence data. Measures included are minimum convex hull area, minimum spanning tree distance, longitudinal range, latitudinal range, maximum pairwise great circle distance, and number of X by X degree cells occupied.
Statistical analysis of monthly background checks of gun purchases for the New York Times story "What Drives Gun Sales: Terrorism, Obama and Calls for Restrictions" at <https://www.nytimes.com/interactive/2015/12/10/us/gun-sales-terrorism-obama-restrictions.html> is provided.
Algebra of operations for blending, copying, adjusting, and compositing layers in ggplot2'. Supports copying and adjusting the aesthetics or parameters of an existing layer, partitioning a layer into multiple pieces for re-composition, applying affine transformations to layers, and combining layers (or partitions of layers) using blend modes (including commutative blend modes, like multiply and darken). Blend mode support is particularly useful for creating plots with overlapping groups where the layer drawing order does not change the output; see Kindlmann and Scheidegger (2014) <doi:10.1109/TVCG.2014.2346325>.
Set of routines for making map projections (forward and inverse), topographic maps, perspective plots, geological maps, geological map symbols, geological databases, interactive plotting and selection of focus regions.
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
This package provides two new layer types for displaying image data as layers within the Grammar of Graphics framework. Displays images using either a rectangle interface, with a fixed bounding box, or a point interface using a central point and general size parameter. Images can be given as local JPEG or PNG files, external resources, or as a list column containing raster image data.
This package purposes to deal with public survey data of Japanese government via their Application Programming Interface (http://statdb.nstac.go.jp/).
The Grouphmap was implemented in R, an open-source programming environment, and was released under the provided website. The difference analysis is based on the limma package, which can cover gene and protein expression profiles (Reference: Matthew E Ritchie , Belinda Phipson , Di Wu , Yifang Hu , Charity W Law , Wei Shi , Gordon K Smyth (2015) <doi:10.1093/nar/gkv007>). The GO enrichment analysis is based on the clusterProfiler package and supports three common species: human, mouse, and yeast (Reference: Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He (2012) <doi:10.1089/omi.2011.0118>). The results of batch difference analysis and enrichment analysis are output in separate folders for easy viewing and further visualization of the results during the process. The results returned a heatmap in R and exported to 3 folders named DEG, go, and merge.
Includes a collection of geographical analysis functions aimed primarily at ecology and conservation science studies, allowing processing of both point and raster data. Now integrates SPECTRE (<https://biodiversityresearch.org/spectre/>), a dataset of global geospatial threat data, developed by the authors.
Gene and Region Counting of Mutations (GARCOM) package computes mutation (or alleles) counts per gene per individuals based on gene annotation or genomic base pair boundaries. It comes with features to accept data formats in plink(.raw) and VCF. It provides users flexibility to extract and filter individuals, mutations and genes of interest.
The Graphical Group Ridge GGRidge package package classifies ridge regression predictors in disjoint groups of conditionally correlated variables and derives different penalties (shrinkage parameters) for these groups of predictors. It combines the ridge regression method with the graphical model for high-dimensional data (i.e. the number of predictors exceeds the number of cases) or ill-conditioned data (e.g. in the presence of multicollinearity among predictors). The package reduces the mean square errors and the extent of over-shrinking of predictors as compared to the ridge method.Aldahmani, S. and Zoubeidi, T. (2020) <DOI:10.1080/00949655.2020.1803320>.
This package provides an interactive workflow for visualizing structural equation modeling (SEM), multi-group path diagrams, and network diagrams in R. Users can directly manipulate nodes and edges to create publication-quality figures while maintaining statistical model integrity. Supports integration with lavaan', OpenMx', tidySEM', and blavaan etc. Features include parameter-based aesthetic mapping, generative AI assistance, and complete reproducibility by exporting metadata for script-based workflows.
This package provides extension types and conversions to between R-native object types and Arrow columnar types. This includes integration among the arrow', nanoarrow', sf', and wk packages such that spatial metadata is preserved wherever possible. Extension type implementations ensure first-class geometry data type support in the arrow and nanoarrow packages.
Send error reports to the Google Error Reporting service <https://cloud.google.com/error-reporting/> and view errors and assign error status in the Google Error Reporting user interface.
Make 2D and 3D plots of linear programming (LP), integer linear programming (ILP), or mixed integer linear programming (MILP) models with up to three objectives. Plots of both the solution and criterion space are possible. For instance the non-dominated (Pareto) set for bi-objective LP/ILP/MILP programming models (see vignettes for an overview). The package also contains an function for checking if a point is inside the convex hull.