Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Training datasets for iC10; which implements the classifier described in the paper Genome-driven integrated classification of breast cancer validated in over 7,500 samples (Ali HR et al., Genome Biology 2014). It uses copy number and/or expression form breast cancer data, trains a pamr classifier (Tibshirani et al.) with the features available and predicts the iC10 group. Genomic annotation for the training dataset has been obtained from Mark Dunning's lluminaHumanv3.db package.
Compute missing values on a training data set and impute them on a new data set. Current available options are median/mode and random forest.
Analyzing Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) measurement data to evaluate isotope ratios (IRs) is a complex process. The IsoCor package facilitates this process and renders it reproducible by providing a function to run a Shiny'-App locally in any web browser. In this App the user can upload data files of various formats, select ion traces, apply peak detection and perform calculation of IRs and delta values. Results are provided as figures and tables and can be exported. The App, therefore, facilitates data processing of ICP-MS experiments to quickly obtain optimal processing parameters compared to traditional Excel worksheet based approaches. A more detailed description can be found in the corresponding article <doi:10.1039/D2JA00208F>. The most recent version of IsoCor can be tested online at <https://apps.bam.de/shn00/IsoCor/>.
Carries out instrumental variable estimation of causal effects, including power analysis, sensitivity analysis, and diagnostics. See Kang, Jiang, Zhao, and Small (2020) <http://pages.cs.wisc.edu/~hyunseung/> for details.
This package provides convenient access to the German modification of the International Classification of Diagnoses, 10th revision (ICD-10-GM). It provides functionality to aid in the identification, specification and historisation of ICD-10 codes. Its intended use is the analysis of routinely collected data in the context of epidemiology, medical research and health services research. The underlying metadata are released by the German Institute for Medical Documentation and Information <https://www.dimdi.de>, and are redistributed in accordance with their license.
Intensity-duration-frequency (IDF) curves are a widely used analysis-tool in hydrology to assess extreme values of precipitation [e.g. Mailhot et al., 2007, <doi:10.1016/j.jhydrol.2007.09.019>]. The package IDF provides functions to estimate IDF parameters for given precipitation time series on the basis of a duration-dependent generalized extreme value distribution [Koutsoyiannis et al., 1998, <doi:10.1016/S0022-1694(98)00097-3>].
An R client for the iplookupapi.com IP Lookup API. The API requires registration of an API key. Basic features are free, some require a paid subscription. You can find the full API documentation at <https://iplookupapi.com/docs> .
This package provides an R version of the InterVA4 software (<http://www.interva.net>) for coding cause of death from verbal autopsies. It also provides simple graphical representation of individual and population level statistics.
Implementation of two multi-criteria decision making methods (MCDM): Intuitionistic Fuzzy Synthetic Measure (IFSM) and Intuitionistic Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (IFTOPSIS) for intuitionistic fuzzy data sets for multi-criteria decision making problems. References describing the methods: JefmaÅ ski (2020) <doi:10.1007/978-3-030-52348-0_4>; JefmaÅ ski, Roszkowska, Kusterka-JefmaÅ ska (2021) <doi:10.3390/e23121636>.
Sample states from the Ising model and compute the probability of states. Sampling can be done for any number of nodes, but due to the intractibility of the Ising model the distribution can only be computed up to ~10 nodes.
Coefficients of Interrater Reliability and Agreement for quantitative, ordinal and nominal data: ICC, Finn-Coefficient, Robinson's A, Kendall's W, Cohen's Kappa, ...
This package provides composable invertible transforms for (sparse) matrices.
This package provides a test bench for the comparison of missing data imputation methods in uni-variate time series. Imputation methods are compared using different error metrics. Proposed imputation methods and alternative error metrics can be used.
This package provides access to the Idea Data Center (IDC) application for conducting nonresponse bias analysis (NRBA). The IDC NRBA app is an interactive, browser-based Shiny application that can be used to analyze survey data with respect to response rates, representativeness, and nonresponse bias. This app provides a user-friendly interface to statistical methods implemented by the nrba package. Krenzke, Van de Kerckhove, and Mohadjer (2005) <http://www.asasrms.org/Proceedings/y2005/files/JSM2005-000572.pdf> and Lohr and Riddles (2016) <https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2016002/article/14677-eng.pdf?st=q7PyNsGR> provide an overview of the statistical methods implemented in the application.
Iterated Function Systems Estimator as in Iacus and La Torre (2005) <doi:10.1155/JAMDS.2005.33>.
The matrix factor model has drawn growing attention for its advantage in achieving two-directional dimension reduction simultaneously for matrix-structured observations. In contrast to the Principal Component Analysis (PCA)-based methods, we propose a simple Iterative Alternating Least Squares (IALS) algorithm for matrix factor model, see the details in He et al. (2023) <arXiv:2301.00360>.
Analyzes raw abundance data from a cellular thermal shift experiment and calculates melt temperatures and melt shifts for each protein in the experiment. McCracken (2022) <doi:10.1101/2022.12.30.522131>.
This package provides a variety of improved shrinkage estimators in the area of statistical analysis: unrestricted; restricted; preliminary test; improved preliminary test; Stein; and positive-rule Stein. More details can be found in chapter 7 of Saleh, A. K. Md. E. (2006) <ISBN: 978-0-471-56375-4>.
This package provides user-friendly tools for calibration in survey sampling. The package is production-oriented, and its interface is inspired by the famous popular macro Calmar for SAS, so that Calmar users can quickly get used to icarus'. In addition to calibration (with linear, raking and logit methods), icarus features functions for calibration on tight bounds and penalized calibration.
Power analysis for regression models which test the interaction of two or three independent variables on a single dependent variable. Includes options for correlated interacting variables and specifying variable reliability. Two-way interactions can include continuous, binary, or ordinal variables. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction() for two-way interactions, and power_interaction_3way_r2() for three-way interactions. Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2023). "Tutorial: Power analyses for interaction effects in cross-sectional regressions." <doi:10.1177/25152459231187531>.
Models, analyzes, and forecasts financial intraday signals. This package currently supports a univariate state-space model for intraday trading volume provided by Chen (2016) <doi:10.2139/ssrn.3101695>.
Includes a collection of shiny applications to demonstrate or to explore fundamental item response theory (IRT) concepts such as estimation, scoring, and multidimensional IRT models.
This package provides a set of fast, chainable image-processing operations which are applicable to images of two, three or four dimensions, particularly medical images.
The general workflow of most imputation methods is quite similar. The aim of this package is to provide parts of this general workflow to make the implementation of imputation methods easier. The heart of an imputation method is normally the used model. These models can be defined using the parsnip package or customized specifications. The rest of an imputation method are more technical specification e.g. which columns and rows should be used for imputation and in which order. These technical specifications can be set inside the imputation functions.