Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
We consider the ultrahigh-dimensional and error-prone data. Our goal aims to estimate the precision matrix and identify the graphical structure of the random variables with measurement error corrected. We further adopt the estimated precision matrix to the linear discriminant function to do classification for multi-label classes.
Implement group response-adaptive randomization procedures, which also integrates standard non-group response-adaptive randomization methods as specialized instances. It is also uniquely capable of managing complex scenarios, including those with delayed and missing responses, thereby expanding its utility in real-world applications. This package offers 16 functions for simulating a variety of response adaptive randomization procedures. These functions are essential for guiding the selection of statistical methods in clinical trials, providing a flexible and effective approach to trial design. Some of the detailed methodologies and algorithms used in this package, please refer to the following references: LJ Wei (1979) <doi:10.1214/aos/1176344614> L. J. WEI and S. DURHAM (1978) <doi:10.1080/01621459.1978.10480109> Durham, S. D., FlournoY, N. AND LI, W. (1998) <doi:10.2307/3315771> Ivanova, A., Rosenberger, W. F., Durham, S. D. and Flournoy, N. (2000) <https://www.jstor.org/stable/25053121> Bai Z D, Hu F, Shen L. (2002) <doi:10.1006/jmva.2001.1987> Ivanova, A. (2003) <doi:10.1007/s001840200220> Hu, F., & Zhang, L. X. (2004) <doi:10.1214/aos/1079120137> Hu, F., & Rosenberger, W. F. (2006, ISBN:978-0-471-65396-7). Zhang, L. X., Chan, W. S., Cheung, S. H., & Hu, F. (2007) <https://www.jstor.org/stable/26432528> Zhang, L., & Rosenberger, W. F. (2006) <doi:10.1111/j.1541-0420.2005.00496.x> Hu, F., Zhang, L. X., Cheung, S. H., & Chan, W. S. (2008) <doi:10.1002/cjs.5550360404>.
This package provides methods for estimating univariate long memory-seasonal/cyclical Gegenbauer time series processes. See for example (2022) <doi:10.1007/s00362-022-01290-3>. Refer to the vignette for details of fitting these processes.
This package provides functions to calculate predicted values and the difference between the two cases with confidence interval for lm() [linear model], glm() [generalized linear model], glm.nb() [negative binomial model], polr() [ordinal logistic model], vglm() [generalized ordinal logistic model], multinom() [multinomial model], tobit() [tobit model], svyglm() [survey-weighted generalised linear models] and lmer() [linear multilevel models] using Monte Carlo simulations or bootstrap. Reference: Bennet A. Zelner (2009) <doi:10.1002/smj.783>.
This package provides a comprehensive suite of genome-wide association study (GWAS) methods specifically designed for biobank-scale data, including but not limited to, robust approaches for time-to-event traits (Li et al., 2025 <doi:10.1038/s43588-025-00864-z>) and ordinal categorical traits (Bi et al., 2021 <doi:10.1016/j.ajhg.2021.03.019>). The package also offers general frameworks for GWAS of any trait type (Bi et al., 2020 <doi:10.1016/j.ajhg.2020.06.003>), while accounting for sample relatedness (Xu et al., 2025 <doi:10.1038/s41467-025-56669-1>) or population structure (Ma et al., 2025 <doi:10.1186/s13059-025-03827-9>). By accurately approximating score statistic distributions using saddlepoint approximation (SPA), these methods can effectively control type I error rates for rare variants and in the presence of unbalanced phenotype distributions. Additionally, the package includes functions for simulating genotype and phenotype data to support research and method development.
Build Open Geospatial Consortium GeoPackage files (<https://www.geopackage.org/>). GDAL utilities for reading and writing spatial data are provided by the terra package. Additional GeoPackage and SQLite features for attributes and tabular data are implemented with the RSQLite package.
Given exposure and survival time series as well as parameter values, GUTS allows for the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood (see Albert, C., Vogel, S. and Ashauer, R. (2016) <doi:10.1371/journal.pcbi.1004978>).
This package provides a unified framework for sparse-group regularization and precision matrix estimation in Gaussian graphical models. It implements multiple sparse-group penalties, including sparse-group lasso, sparse-group adaptive lasso, sparse-group SCAD, and sparse-group MCP, and solves them efficiently using ADMM-based optimization. The package is designed for high-dimensional network inference where both sparsity and group structure are present.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
This package provides deterministic forecasting for weekly, monthly, quarterly, and yearly time series using the Generalized Adaptive Capped Estimator. The method includes preprocessing for missing and extreme values, extraction of multiple growth components (including long-term, short-term, rolling, and drift-based signals), volatility-aware asymmetric capping, optional seasonal adjustment via damped and normalized seasonal factors, and a recursive forecast formulation with moderated growth. The package includes a user-facing forecasting interface and a plotting helper for visualization. Related forecasting background is discussed in Hyndman and Athanasopoulos (2021) <https://otexts.com/fpp3/> and Hyndman and Khandakar (2008) <doi:10.18637/jss.v027.i03>. The method extends classical extrapolative forecasting approaches and is suited for operational and business planning contexts where stability and interpretability are important.
This package provides a framework to assist creation of marine ecosystem models, generating either R or C++ code which can then be optimised using the TMB package and standard R tools. Principally designed to reproduce gadget2 models in TMB', but can be extended beyond gadget2's capabilities. Kasper Kristensen, Anders Nielsen, Casper W. Berg, Hans Skaug, Bradley M. Bell (2016) <doi:10.18637/jss.v070.i05> "TMB: Automatic Differentiation and Laplace Approximation.". Begley, J., & Howell, D. (2004) <https://files01.core.ac.uk/download/pdf/225936648.pdf> "An overview of Gadget, the globally applicable area-disaggregated general ecosystem toolbox. ICES.".
Interact with the Google Analytics APIs <https://developers.google.com/analytics/>, including the Core Reporting API (v3 and v4), Management API, User Activity API GA4's Data API and Admin API and Multi-Channel Funnel API.
An implementation of functions to display Greek letters on the RStudio (include subscript and superscript indexes) and RGui (without subscripts and only with superscript 1, 2 or 3; because RGui doesn't support printing the corresponding Unicode characters as a string: all subscripts ranging from 0 to 9 and superscripts equal to 0, 4, 5, 6, 7, 8 or 9). The functions in this package do not work properly on the R console. Characters are used via Unicode and encoded as UTF-8 to ensure that they can be viewed on all operating systems. Other characters related to mathematics are included, such as the infinity symbol. All this accessible from very simple commands. This is a package that can be used for teaching purposes, the statistical notation for hypothesis testing can be written from this package and so it is possible to build a course from the swirlify package. Another utility of this package is to create new summary functions that contain the functional form of the model adjusted with the Greek letters, thus making the transition from statistical theory to practice easier. In addition, it is a natural extension of the clisymbols package.
Group method of data handling (GMDH) - type neural network algorithm is the heuristic self-organization method for modelling the complex systems. In this package, GMDH-type neural network algorithms are applied to make short term forecasting for a univariate time series.
The goal of gnonadd is to simplify workflows in the analysis of non-additive effects of sequence variants. This includes variance effects (Ivarsdottir et. al (2017) <doi:10.1038/ng.3928>), correlation effects, interaction effects and dominance effects. The package also includes convenience functions for visualization.
Efficient algorithms for fitting regularization paths for linear or logistic regression models penalized by LEP.
Flowcharts can be a useful way to visualise complex processes. This package uses the layered grammar of graphics of ggplot2 to create simple flowcharts.
This package provides tools to compute the Generalized Measure of Correlation (GMC), a dependence measure accounting for nonlinearity and asymmetry in the relationship between variables. Based on the method proposed by Zheng, Shi, and Zhang (2012) <doi:10.1080/01621459.2012.710509>.
An implementation of the generalized graded unfolding model (GGUM) in R, see Roberts, Donoghue, and Laughlin (2000) <doi:10.1177/01466216000241001>). It allows to simulate data sets based on the GGUM. It fits the GGUM and the GUM, and it retrieves item and person parameter estimates. Several plotting functions are available (item and test information functions; item and test characteristic curves; item category response curves). Additionally, there are some functions that facilitate the communication between R and GGUM2004'. Finally, a model-fit checking utility, MODFIT(), is also available.
We implement various tests for the composite hypothesis of testing the fit to the family of inverse Gaussian distributions. Included are methods presented by Allison, J.S., Betsch, S., Ebner, B., and Visagie, I.J.H. (2022) <doi:10.48550/arXiv.1910.14119>, as well as two tests from Henze and Klar (2002) <doi:10.1023/A:1022442506681>. Additionally, the package implements a test proposed by Baringhaus and Gaigall (2015) <doi:10.1016/j.jmva.2015.05.013>. For each test a parametric bootstrap procedure is implemented.
This package provides functions for performing graphical difference testing. Differences are generated between raster images. Comparisons can be performed between different package versions and between different R versions.
Add glossaries to markdown and quarto documents by tagging individual words. Definitions can be provided inline or in a separate file.
This package provides function to apply "Group sequential enrichment design incorporating subgroup selection" (GSED) method proposed by Magnusson and Turnbull (2013) <doi:10.1002/sim.5738>.
Access data provided by the United States Government Publishing Office (GPO) GovInfo API (<https://github.com/usgpo/api>).