Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for specifying and evaluating standard and truncated probability distributions, with support for log-space computation and joint distribution specification. It enables Bayesian computation for cognition models and includes utilities for density calculation, sampling, and visualisation, facilitating prior distribution specification and model assessment in hierarchical Bayesian frameworks.
Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2025) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), smoothed support vector machines (svm1), squared support vector machines (svm2), logistic regression (binomial), proportional odds logistic regression (ordinal), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.
Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution. Finite-sample genome-wide regression p-values (Gwrpv) with a non-normally distributed phenotype (Gregory Connor and Michael O'Neill, bioRxiv 204727 <doi:10.1101/204727>).
This package provides a ggplot2 extension that allows text to follow curved paths. Curved text makes it easier to directly label paths or neatly annotate in polar co-ordinates.
Boosting models for fitting generalized additive models for location, shape and scale ('GAMLSS') to potentially high dimensional data.
The main purpose of this package is to allow fitting of mixture distributions with generalised additive models for location scale and shape models see Chapter 7 of Stasinopoulos et al. (2017) <doi:10.1201/b21973-4>.
Two-Step Lasso (TS-Lasso) and compound minimum methods to recover the abundance of missing peaks in mass spectrum analysis. TS-Lasso is an imputation method that handles various types of missing peaks simultaneously. This package provides the procedure to generate missing peaks (or data) for simulation study, as well as a tool to estimate and visualize the proportion of missing at random.
D&D alignment charts show 9 boxes with values for good through evil and values for chaotic through lawful. This package easily creates these alignment charts from user-provided image paths and alignment values.
Display a random fact about Carl Friedrich Gauss based the on collection curated by Mike Cavers via the <http://gaussfacts.com> site.
Fit the penalized Cox models with both non-overlapping and overlapping grouped penalties including the group lasso, group smoothly clipped absolute deviation, and group minimax concave penalty. The algorithms combine the MM approach and group-wise descent with some computational tricks including the screening, active set, and warm-start. Different tuning regularization parameter methods are provided.
Calculates the cost of crossing in terms of the number of individuals and generations, which is theoretically formulated by Servin et al. (2004) <DOI:10.1534/genetics.103.023358>. This package has been designed for selecting appropriate parental genotypes and find the most efficient crossing scheme for gene pyramiding, especially for plant breeding.
Access to The Guardian newspaper's open API <https://open-platform.theguardian.com/>, containing all articles published in The Guardian from 1999 to the present, including article text, metadata, tags and contributor information. An API key and registration is required.
Firstly, both functions of the univariate Poisson dispersion index (DI) for count data and the univariate exponential variation index (VI) for nonnegative continuous data are performed. Next, other functions of univariate indexes such the binomial dispersion index (DIb), the negative binomial dispersion index (DInb) and the inverse Gaussian variation index (VIiG) are given. Finally, we are computed some multivariate versions of these functions such that the generalized dispersion index (GDI) with its marginal one (MDI) and the generalized variation index (GVI) with its marginal one (MVI) too.
This package provides tools and methods to apply the model Geospatial Regression Equation for European Nutrient losses (GREEN); Grizzetti et al. (2005) <doi:10.1016/j.jhydrol.2004.07.036>; Grizzetti et al. (2008); Grizzetti et al. (2012) <doi:10.1111/j.1365-2486.2011.02576.x>; Grizzetti et al. (2021) <doi:10.1016/j.gloenvcha.2021.102281>.
This package provides a set of geometries to make line plots a little bit nicer. Use along with ggplot2 to: - Improve the clarity of line plots with many overlapping lines - Draw more realistic worms.
Demos for smoothing and gamlss.family distributions.
Support for geostatistical analysis of multivariate data, in particular data with restrictions, e.g. positive amounts, compositions, distributional data, microstructural data, etc. It includes descriptive analysis and modelling for such data, both from a two-point Gaussian perspective and multipoint perspective. The methods mainly follow Tolosana-Delgado, Mueller and van den Boogaart (2018) <doi:10.1007/s11004-018-9769-3>.
Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.
This package provides a ggplot2 extension providing an integrative framework for composable visualization, enabling the creation of complex multi-plot layouts such as insets, circular arrangements, and multi-panel compositions. Built on the grammar of graphics, it offers tools to align, stack, and nest plots, simplifying the construction of richly annotated figures for high-dimensional data contextsâ such as genomics, transcriptomics, and microbiome studiesâ by making it easy to link related plots, overlay clustering results, or highlight shared patterns.
This package provides functions for the g-and-k and generalised g-and-h distributions.
Gene sets are fundamental for gene enrichment analysis. The package geneset enables querying gene sets from public databases including GO (Gene Ontology Consortium. (2004) <doi:10.1093/nar/gkh036>), KEGG (Minoru et al. (2000) <doi:10.1093/nar/28.1.27>), WikiPathway (Marvin et al. (2020) <doi:10.1093/nar/gkaa1024>), MsigDb (Arthur et al. (2015) <doi:10.1016/j.cels.2015.12.004>), Reactome (David et al. (2011) <doi:10.1093/nar/gkq1018>), MeSH (Ish et al. (2014) <doi:10.4103/0019-5413.139827>), DisGeNET (Janet et al. (2017) <doi:10.1093/nar/gkw943>), Disease Ontology (Lynn et al. (2011) <doi:10.1093/nar/gkr972>), Network of Cancer Genes (Dimitra et al. (2019) <doi:10.1186/s13059-018-1612-0>) and COVID-19 (Maxim et al. (2020) <doi:10.21203/rs.3.rs-28582/v1>). Gene sets are stored in the list object which provides data frame of geneset and geneset_name'. The geneset has two columns of term ID and gene ID. The geneset_name has two columns of terms ID and term description.
Generalized Turnbull's estimator proposed by Dehghan and Duchesne (2011).
This package provides a user-friendly, highly customizable R package for building horizon plots in the ggplot2 environment.
Genomic signatures represent unique features within a species DNA, enabling the differentiation of species and offering broad applications across various fields. This package provides essential tools for calculating these specific signatures, streamlining the process for researchers and offering a comprehensive and time-saving solution for genomic analysis.The amino acid contents are identified based on the work published by Sandberg et al. (2003) <doi:10.1016/s0378-1119(03)00581-x> and Xiao et al. (2015) <doi:10.1093/bioinformatics/btv042>. The Average Mutual Information Profiles (AMIP) values are calculated based on the work of Bauer et al. (2008) <doi:10.1186/1471-2105-9-48>. The Chaos Game Representation (CGR) plot visualization was done based on the work of Deschavanne et al. (1999) <doi:10.1093/oxfordjournals.molbev.a026048> and Jeffrey et al. (1990) <doi:10.1093/nar/18.8.2163>. The GC content is calculated based on the work published by Nakabachi et al. (2006) <doi:10.1126/science.1134196> and Barbu et al. (1956) <https://pubmed.ncbi.nlm.nih.gov/13363015>. The Oligonucleotide Frequency Derived Error Gradient (OFDEG) values are computed based on the work published by Saeed et al. (2009) <doi:10.1186/1471-2164-10-S3-S10>. The Relative Synonymous Codon Usage (RSCU) values are calculated based on the work published by Elek (2018) <https://urn.nsk.hr/urn:nbn:hr:217:686131>.