Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains additional miscellaneous steps for the recipes package. These steps are useful, but doesn't have a good home in other recipes packages or its extensions.
Fast procedures for small set of commonly-used, design-appropriate estimators with robust standard errors and confidence intervals. Includes estimators for linear regression, instrumental variables regression, difference-in-means, Horvitz-Thompson estimation, and regression improving precision of experimental estimates by interacting treatment with centered pre-treatment covariates introduced by Lin (2013) <doi:10.1214/12-AOAS583>.
The main aim is to further facilitate the creation of exercises based on the package exams by Grün, B., and Zeileis, A. (2009) <doi:10.18637/jss.v029.i10>. Creating effective student exercises involves challenges such as creating appropriate data sets and ensuring access to intermediate values for accurate explanation of solutions. The functionality includes the generation of univariate and bivariate data including simple time series, functions for theoretical distributions and their approximation, statistical and mathematical calculations for tasks in basic statistics courses as well as general tasks such as string manipulation, LaTeX/HTML formatting and the editing of XML task files for Moodle'.
High-performance implementation of various effect plots useful for regression and probabilistic classification tasks. The package includes partial dependence plots (Friedman, 2021, <doi:10.1214/aos/1013203451>), accumulated local effect plots and M-plots (both from Apley and Zhu, 2016, <doi:10.1111/rssb.12377>), as well as plots that describe the statistical associations between model response and features. It supports visualizations with either ggplot2 or plotly', and is compatible with most models, including Tidymodels', models wrapped in DALEX explainers, or models with case weights.
Fits the space-time Epidemic Type Aftershock Sequence ('ETAS') model to earthquake catalogs using a stochastic declustering approach. The ETAS model is a spatio-temporal marked point process model and a special case of the Hawkes process. The package is based on a Fortran program by Jiancang Zhuang (available at <https://bemlar.ism.ac.jp/zhuang/software.html>), which is modified and translated into C++ and C such that it can be called from R. Parallel computing with OpenMP is possible on supported platforms.
This package provides a simple approach to using a probit or logit analysis to calculate lethal concentration (LC) or time (LT) and the appropriate fiducial confidence limits desired for selected LC or LT for ecotoxicology studies (Finney 1971; Wheeler et al. 2006; Robertson et al. 2007). The simplicity of ecotox comes from the syntax it implies within its functions which are similar to functions like glm() and lm(). In addition to the simplicity of the syntax, a comprehensive data frame is produced which gives the user a predicted LC or LT value for the desired level and a suite of important parameters such as fiducial confidence limits and slope. Finney, D.J. (1971, ISBN: 052108041X); Wheeler, M.W., Park, R.M., and Bailer, A.J. (2006) <doi:10.1897/05-320R.1>; Robertson, J.L., Savin, N.E., Russell, R.M., and Preisler, H.K. (2007, ISBN: 0849323312).
This package provides a tool to run Monte Carlo simulation of catastrophe model event loss tables, using a Poisson frequency and Beta severity distribution.
This package provides functions for the echelon analysis proposed by Myers et al. (1997) <doi:10.1023/A:1018518327329>, and the detection of spatial clusters using echelon scan method proposed by Kurihara (2003) <doi:10.20551/jscswabun.15.2_171>.
Import physiologic data stored in the European Data Format (EDF and EDF+) into R. Both EDF and EDF+ files are supported. Discontinuous EDF+ files are not yet supported.
This package provides a set of functions to estimate capture probabilities and densities from multipass pass removal data.
The EXPOS model uses a digital elevation model (DEM) to estimate exposed and protected areas for a given hurricane wind direction and inflection angle. The resulting topographic exposure maps can be combined with output from the HURRECON model to estimate hurricane wind damage across a region. For details on the original version of the EXPOS model written in Borland Pascal', see: Boose, Foster, and Fluet (1994) <doi:10.2307/2937142>, Boose, Chamberlin, and Foster (2001) <doi:10.1890/0012-9615(2001)071[0027:LARIOH]2.0.CO;2>, and Boose, Serrano, and Foster (2004) <doi:10.1890/02-4057>.
Analysis of temporal changes (i.e. dynamics) of ecological entities, defined as trajectories on a chosen multivariate space, by providing a set of trajectory metrics and visual representations [De Caceres et al. (2019) <doi:10.1002/ecm.1350>; and Sturbois et al. (2021) <doi:10.1016/j.ecolmodel.2020.109400>]. Includes functions to estimate metrics for individual trajectories (length, directionality, angles, ...) as well as metrics to relate pairs of trajectories (dissimilarity and convergence). Functions are also provided to estimate the ecological quality of ecosystem with respect to reference conditions [Sturbois et al. (2023) <doi:10.1002/ecs2.4726>].
Collection of R functions and data sets for the support of spatial ecology analyses with a focus on pre, core and post modelling analyses of species distribution, niche quantification and community assembly. Written by current and former members and collaborators of the ecospat group of Antoine Guisan, Department of Ecology and Evolution (DEE) and Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Switzerland. Read Di Cola et al. (2016) <doi:10.1111/ecog.02671> for details.
Support functions for R-based EQUAL-STATS software which automatically classifies the data and performs appropriate statistical tests. EQUAL-STATS software is a shiny application with an user-friendly interface to perform complex statistical analysis. Gurusamy,K (2024)<doi:10.5281/zenodo.13354162>.
Descriptive analysis is essential for publishing medical articles. This package provides an easy way to conduct the descriptive analysis. 1. Both numeric and factor variables can be handled. For numeric variables, normality test will be applied to choose the parametric and nonparametric test. 2. Both two or more groups can be handled. For groups more than two, the post hoc test will be applied, Tukey for the numeric variables and FDR for the factor variables. 3. T test, ANOVA or Fisher test can be forced to apply. 4. Mean and standard deviation can be forced to display.
Computes shrinkage estimators for regression problems. Selects penalty parameter by minimizing bias and variance in the effect estimate, where bias and variance are estimated from the posterior predictive distribution. See Keller and Rice (2017) <doi:10.1093/aje/kwx225> for more details.
Efficiently impute large scale matrix with missing values via its unbiased low-rank matrix approximation. Our main approach is Hard-Impute algorithm proposed in <https://www.jmlr.org/papers/v11/mazumder10a.html>, which achieves highly computational advantage by truncated singular-value decomposition.
This package contains tools for formatting inline code, renaming redundant columns, aggregating age categories, adding survey weights, finding the earliest date of an event, plotting z-curves, generating population counts and formatting proportions with confidence intervals. This is part of the R4Epis project <https://r4epi.github.io/sitrep/>.
Calculate cutoff values for model fit measures used in structural equation modeling (SEM) by simulating and testing data sets (cf. Hu & Bentler, 1999 <doi:10.1080/10705519909540118>) with the same parameters (population model, number of observations, etc.) as the model under consideration.
This package provides a set of functions for computing expected permutation matrices given a matrix of likelihoods for each individual assignment. It has been written to accompany the forthcoming paper Computing expectations and marginal likelihoods for permutations'. Publication details will be updated as soon as they are finalized.
Null models to analyse ecological networks (e.g. food webs, flower-visitation networks, seed-dispersal networks) and detect resource preferences or non-random interactions among network nodes. Tools are provided to run null models, test for and plot preferences, plot and analyse bipartite networks, and export null model results in a form compatible with other network analysis packages. The underlying null model was developed by Agusti et al. (2003) Molecular Ecology <doi:10.1046/j.1365-294X.2003.02014.x> and the full application to ecological networks by Vaughan et al. (2018) econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology & Evolution, <doi:10.1111/2041-210X.12907>.
Endpoint selection and sample size reassessment for multiple binary endpoints based on blinded and/or unblinded data. Trial design that allows an adaptive modification of the primary endpoint based on blinded information obtained at an interim analysis. The decision rule chooses the endpoint with the lower estimated required sample size. Additionally, the sample size is reassessed using the estimated event probabilities and correlation between endpoints. The implemented design is proposed in Bofill Roig, M., Gómez Melis, G., Posch, M., and Koenig, F. (2022). <doi:10.48550/arXiv.2206.09639>.
This package provides tools for simulating from continuous-time individual level models of disease transmission, and carrying out infectious disease data analyses with the same models. The epidemic models considered are distance-based and/or contact network-based models within Susceptible-Infectious-Removed (SIR) or Susceptible-Infectious-Notified-Removed (SINR) compartmental frameworks. <doi:10.18637/jss.v098.i10>.
Import SPSS data, handle and change SPSS meta data, store and access large hierarchical data in SQLite data bases.