Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Fit right censored Multiple Ordinal Tobit (MOT) model.
This package provides bindings to the Leaflet.glify JavaScript library which extends the leaflet JavaScript library to render large data in the browser using WebGl'.
Constructs tables of counts and proportions out of data sets with possibility to insert tables to Excel, Word, HTML, and PDF documents. Transforms tables to data suitable for modelling. Features Gibbs sampling based log-linear (NB2) and power analyses (original by Oleksandr Ocheredko <doi:10.35566/isdsa2019c5>) for tabulated data.
Implementations of estimation algorithm of low rank plus sparse structured VAR model by using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). It relates to the algorithm in Sumanta, Li, and Michailidis (2019) <doi:10.1109/TSP.2018.2887401>.
This package provides a simple mechanism to specify a symmetric block diagonal matrices (often used for covariance matrices). This is based on the domain specific language implemented in nlmixr2 but expanded to create matrices in R generally instead of specifying parts of matrices to estimate. It has expanded to include some matrix manipulation functions that are generally useful for rxode2 and nlmixr2'.
Creating efficiently new column(s) in a data frame (including tibble) by applying a function one row at a time.
This package implements the LS-PLS (least squares - partial least squares) method described in for instance Jørgensen, K., Segtnan, V. H., Thyholt, K., Næs, T. (2004) "A Comparison of Methods for Analysing Regression Models with Both Spectral and Designed Variables" Journal of Chemometrics, 18(10), 451--464, <doi:10.1002/cem.890>.
Estimate haplotypic or composite pairwise linkage disequilibrium (LD) in polyploids, using either genotypes or genotype likelihoods. Support is provided to estimate the popular measures of LD: the LD coefficient D, the standardized LD coefficient D', and the Pearson correlation coefficient r. All estimates are returned with corresponding standard errors. These estimates and standard errors can then be used for shrinkage estimation. The main functions are ldfast(), ldest(), mldest(), sldest(), plot.lddf(), format_lddf(), and ldshrink(). Details of the methods are available in Gerard (2021a) <doi:10.1111/1755-0998.13349> and Gerard (2021b) <doi:10.1038/s41437-021-00462-5>.
An interface for the image processing program ImageJ', which allows a rapid digital image analysis for particle sizes. This package includes function to write an ImageJ macro which is optimized for a leaf area analysis by default.
The solution of equality constrained least squares problem (LSE) is given through four analytics methods (Generalized QR Factorization, Lagrange Multipliers, Direct Elimination and Null Space method). We expose the orthogonal decomposition called Generalized QR Factorization (GQR) and also RQ factorization. Finally some codes for the solution of LSE applied in quaternions.
This package provides a stochastic, spatially-explicit, demo-genetic model simulating the spread and evolution of a plant pathogen in a heterogeneous landscape to assess resistance deployment strategies. It is based on a spatial geometry for describing the landscape and allocation of different cultivars, a dispersal kernel for the dissemination of the pathogen, and a SEIR ('Susceptible-Exposed-Infectious-Removedâ ) structure with a discrete time step. It provides a useful tool to assess the performance of a wide range of deployment options with respect to their epidemiological, evolutionary and economic outcomes. Loup Rimbaud, Julien Papaïx, Jean-François Rey, Luke G Barrett, Peter H Thrall (2018) <doi:10.1371/journal.pcbi.1006067>.
An effortless ndjson (newline-delimited JSON') logger, with two primary log-writing interfaces. It provides a set of wrappings for base R's message(), warning(), and stop() functions that maintain identical functionality, but also log the handler message to an ndjson log file. loggit also exports its internal loggit() function for powerful and configurable custom logging. No change in existing code is necessary to use this package, and should only require additions to fully leverage the power of the logging system. loggit also provides a log reader for reading an ndjson log file into a data frame, log rotation, and live echo of the ndjson log messages to terminal stdout for log capture by external systems (like containers). loggit is ideal for Shiny apps, data pipelines, modeling work flows, and more. Please see the vignettes for detailed example use cases.
Fit relationship-based and customized mixed-effects models with complex variance-covariance structures using the lme4 machinery. The core computational algorithms are implemented using the Eigen C++ library for numerical linear algebra and RcppEigen glue'.
Nonparametric methods for landmark prediction of long-term survival outcomes, incorporating covariate and short-term event information. The package supports the construction of flexible varying-coefficient models that use discrete covariates, as well as multiple continuous covariates. The goal is to improve prediction accuracy when censored short-term events are available as predictors, using robust nonparametric procedures that do not require correct model specification and avoid restrictive parametric assumptions found in alternative methods. More information on these methods can be found in Parast et al. 2012 <doi:10.1080/01621459.2012.721281>, Parast et al. 2011 <doi:10.1002/bimj.201000150>, and Parast and Cai 2013 <doi:10.1002/sim.5776>. A tutorial for this package is available here: <https://www.laylaparast.com/landpred>.
Analyze graph/network data using L1 centrality and prestige. Functions for deriving global, local, and group L1 centrality/prestige are provided. Routines for visual inspection of a graph/network are also provided. Details are in Kang and Oh (2025a) <doi:10.1080/01621459.2025.2520467>, Kang and Oh (2025b) <doi:10.1080/00031305.2025.2563730>, and Kang (2025) <doi:10.23170/snu.000000188358.11032.0001856>.
This package provides functions for fitting a functional principal components logit regression model in four different situations: ordinary and filtered functional principal components of functional predictors, included in the model according to their variability explanation power, and according to their prediction ability by stepwise methods. The proposed methods were developed in Escabias et al (2004) <doi:10.1080/10485250310001624738> and Escabias et al (2005) <doi:10.1016/j.csda.2005.03.011>.
Labels are a common construct in statistical software providing a human readable description of a variable. While variable names are succinct, quick to type, and follow a language's naming conventions, labels may be more illustrative and may use plain text and spaces. R does not provide native support for labels. Some packages, however, have made this feature available. Most notably, the Hmisc package provides labelling methods for a number of different object. Due to design decisions, these methods are not all exported, and so are unavailable for use in package development. The labelVector package supports labels for atomic vectors in a light-weight design that is suitable for use in other packages.
Solves quadratic programming problems where the Hessian is represented as the product of two matrices. Thanks to Greg Hunt for helping getting this version back on CRAN. The methods in this package are described in: Ormerod, Wand and Koch (2008) "Penalised spline support vector classifiers: computational issues" <doi:10.1007/s00180-007-0102-8>.
This package provides a bunch of algorithms based on linear programming for estimating, under the homogeneity hypothesis, RxC ecological contingency tables (or vote transition matrices) using mainly aggregate data (from voting units). References: Pavà a and Romero (2024) <doi:10.1177/00491241221092725>. Pavà a and Romero (2024) <doi:10.1093/jrsssa/qnae013>. Pavà a (2023) <doi:10.1007/s43545-023-00658-y>. Pavà a (2024) <doi:10.1080/0022250X.2024.2423943>. Pavà a (2024) <doi:10.1177/07591063241277064>. Pavà a and Penadés (2024). A bottom-up approach for ecological inference. Romero, Pavà a, Martà n and Romero (2020) <doi:10.1080/02664763.2020.1804842>. Acknowledgements: The authors wish to thank Consellerà a de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grants AICO/2021/257, CIAICO/2023/031) and MICIU/AEI/10.13039/501100011033/FEDER, UE (grant PID2021-128228NB-I00) for supporting this research.
This package provides functions for regional frequency analysis using the methods of J. R. M. Hosking and J. R. Wallis (1997), "Regional frequency analysis: an approach based on L-moments".
This package provides a set of all-cause and cause-specific life expectancy sensitivity and decomposition methods, including Arriaga (1984) <doi:10.2307/2061029>, others documented by Ponnapalli (2005) <doi:10.4054/DemRes.2005.12.7>, lifetable, numerical, and other algorithmic approaches such as Horiuchi et al (2008) <doi:10.1353/dem.0.0033>, or Andreev et al (2002) <doi:10.4054/DemRes.2002.7.14>.
Short for linear binning', the linbin package provides functions for manipulating, binning, and plotting linearly referenced data. Although developed for data collected on river networks, it can be used with any interval or point data referenced to a 1-dimensional coordinate system. Flexible bin generation and batch processing makes it easy to compute and visualize variables at multiple scales, useful for identifying patterns within and between variables and investigating the influence of scale of observation on data interpretation.
Palettes generated from limnology based field and laboratory photos. Palettes can be used to generate color values to be used in any functions that calls for a color (i.e. ggplot(), plot(), flextable(), etc.).
Simplex optimization algorithms as firstly proposed by Spendley et al. (1962) <doi:10.1080/00401706.1962.10490033> and later modified by Nelder and Mead (1965) <doi:10.1093/comjnl/7.4.308> for laboratory and manufacturing processes. The package also provides tools for graphical representation of the simplexes and some example response surfaces that are useful in illustrating the optimization process.