Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
grasp2db, sqlite wrap of NHLBI GRASP 2.0, an extended GWAS catalog.
Low- and high-level wrappers for Gemma's RESTful API. They enable access to curated expression and differential expression data from over 10,000 published studies. Gemma is a web site, database and a set of tools for the meta-analysis, re-use and sharing of genomics data, currently primarily targeted at the analysis of gene expression profiles.
This package contain functions to run genomic instability analysis (GIA) from scRNA-Seq data. GIA estimates the association between gene expression and genomic location of the coding genes. It uses the aREA algorithm to quantify the enrichment of sets of contiguous genes (loci-blocks) on the gene expression profiles and estimates the Genomic Instability Score (GIS) for each analyzed cell.
This package enables regression and classification on high-dimensional data with different relative strengths of penalization for different feature groups, such as different assays or omic types. The optimal relative strengths are chosen adaptively. Optimisation is performed using a variational Bayes approach.
Perform Mendelian randomization analysis of multiple SNPs to determine risk factors causing disease of study and to exclude confounding variabels and perform path analysis to construct path of risk factors to the disease.
Download genome and assembly reports from NCBI.
Recurrent breakpoint gene detection on copy number aberration profiles.
This package provides classes and methods for handling pedigree data. It also includes functions to calculate genetic relationship measures as relationship and inbreeding coefficients and other utilities. Note that package is not yet stable. Use it with care!
This package provides transcript expression and bi-allelic genotypes corresponding to the chromosome 19 for CEU individuals from the GEUVADIS project, Lappalainen et al.
The package offers four network inference statistical models using Dynamic Bayesian Networks and Gibbs Variable Selection: a linear interaction model, two linear interaction models with added experimental noise (Gaussian and Student distributed) for the case where replicates are available and a non-linear interaction model.
R package with internal dose-response test data. Package provides functions to generate input testing data that can be used as the input for gDR pipeline. It also contains qs files with MAE data processed by gDR.
Generative modeling for protein engineering is key to solving fundamental problems in synthetic biology, medicine, and material science. Machine learning has enabled us to generate useful protein sequences on a variety of scales. Generative models are machine learning methods which seek to model the distribution underlying the data, allowing for the generation of novel samples with similar properties to those on which the model was trained. Generative models of proteins can learn biologically meaningful representations helpful for a variety of downstream tasks. Furthermore, they can learn to generate protein sequences that have not been observed before and to assign higher probability to protein sequences that satisfy desired criteria. In this package, common deep generative models for protein sequences, such as variational autoencoder (VAE), generative adversarial networks (GAN), and autoregressive models are available. In the VAE and GAN, the Word2vec is used for embedding. The transformer encoder is applied to protein sequences for the autoregressive model.
This package contains utility functions used throughout the gDR platform to fit data, manipulate data, and convert and validate data structures. This package also has the necessary default constants for gDR platform. Many of the functions are utilized by the gDRcore package.
This package is built to perform GWAS analysis using Bayesian techniques. Currently, GWAS.BAYES has functionality for the implementation of BICOSS (Williams, J., Ferreira, M. A., and Ji, T. (2022). BICOSS: Bayesian iterative conditional stochastic search for GWAS. BMC Bioinformatics), BGWAS (Williams, J., Xu, S., Ferreira, M. A.. (2023) "BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies." BMC Bioinformatics), and GINA. All methods currently are for the analysis of Gaussian phenotypes The research related to this package was supported in part by National Science Foundation awards DMS 1853549, DMS 1853556, and DMS 2054173.
If you have a set of genomic ranges, this package can help you with visualization and comparison. It produces several kinds of plots, for example: Chromosome distribution plots, which visualize how your regions are distributed over chromosomes; feature distance distribution plots, which visualizes how your regions are distributed relative to a feature of interest, like Transcription Start Sites (TSSs); genomic partition plots, which visualize how your regions overlap given genomic features such as promoters, introns, exons, or intergenic regions. It also makes it easy to compare one set of ranges to another.
Microarray expression matrix platform GPL6106 and clinical data for 67 septicemic patients and made them available as GEO accession [GSE13015](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13015). GSE13015 data have been parsed into a SummarizedExperiment object available in ExperimentHub. This data data could be used as an example supporting BloodGen3Module R package.
Spike-in data for GC/MS data and methods within flagme.
This package provides long description of genes collected from the RefSeq database. The text in "COMMENT" section started with "Summary" is extracted as the description of the gene. The long text descriptions can be used for analysis such as text mining.
The GSEABenchmarkeR package implements an extendable framework for reproducible evaluation of set- and network-based methods for enrichment analysis of gene expression data. This includes support for the efficient execution of these methods on comprehensive real data compendia (microarray and RNA-seq) using parallel computation on standard workstations and institutional computer grids. Methods can then be assessed with respect to runtime, statistical significance, and relevance of the results for the phenotypes investigated.
Gene Set Enrichment Analysis is a very powerful and interesting computational method that allows an easy correlation between differential expressed genes and biological processes. Unfortunately, although it was designed to help researchers to interpret gene expression data it can generate huge amounts of results whose biological meaning can be difficult to interpret. Many available tools rely on the hierarchically structured Gene Ontology (GO) classification to reduce reundandcy in the results. However, due to the popularity of GSEA many more gene set collections, such as those in the Molecular Signatures Database are emerging. Since these collections are not organized as those in GO, their usage for GSEA do not always give a straightforward answer or, in other words, getting all the meaninful information can be challenging with the currently available tools. For these reasons, GSEAmining was born to be an easy tool to create reproducible reports to help researchers make biological sense of GSEA outputs. Given the results of GSEA, GSEAmining clusters the different gene sets collections based on the presence of the same genes in the leadind edge (core) subset. Leading edge subsets are those genes that contribute most to the enrichment score of each collection of genes or gene sets. For this reason, gene sets that participate in similar biological processes should share genes in common and in turn cluster together. After that, GSEAmining is able to identify and represent for each cluster: - The most enriched terms in the names of gene sets (as wordclouds) - The most enriched genes in the leading edge subsets (as bar plots). In each case, positive and negative enrichments are shown in different colors so it is easy to distinguish biological processes or genes that may be of interest in that particular study.
This package provides a series of statistical models using count generating distributions for background modelling, feature and sample QC, normalization and differential expression analysis on GeoMx RNA data. The application of these methods are demonstrated by example data analysis vignette.
GeneStructureTools can be used to create in silico alternative splicing events, and analyse potential effects this has on functional gene products.
This package manages a text file in cloud with March 30 2021 snapshot of EBI/EMBL GWAS catalog.This simplifies access to a snapshot of EBI GWASCAT. More current images can be obtained using the gwascat package.
Illumina Golden Gate Human Methylation Cancer Panel Version 1 annotation data (chip GGHumanMethCancerPanelv1) assembled using data from public repositories.