Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Organize a so-called ragged array as generalized arrays, which is simply an array with sub-dimensions denoting the subdivision of dimensions (grouping of members within dimensions). By the margins (names of dimensions and sub-dimensions) in generalized arrays, operators and utility functions provided in this package automatically match the margins, doing map-reduce style parallel computation along margins. Generalized arrays are also cooperative to R's native functions that work on simple arrays.
The gRbase package provides graphical modelling features used by e.g. the packages gRain', gRim and gRc'. gRbase implements graph algorithms including (i) maximum cardinality search (for marked and unmarked graphs). (ii) moralization, (iii) triangulation, (iv) creation of junction tree. gRbase facilitates array operations, gRbase implements functions for testing for conditional independence. gRbase illustrates how hierarchical log-linear models may be implemented and describes concept of graphical meta data. The facilities of the package are documented in the book by Højsgaard, Edwards and Lauritzen (2012, <doi:10.1007/978-1-4614-2299-0>) and in the paper by Dethlefsen and Højsgaard, (2005, <doi:10.18637/jss.v014.i17>). Please see citation("gRbase") for citation details.
Processing collections of Earth observation images as on-demand multispectral, multitemporal raster data cubes. Users define cubes by spatiotemporal extent, resolution, and spatial reference system and let gdalcubes automatically apply cropping, reprojection, and resampling using the Geospatial Data Abstraction Library ('GDAL'). Implemented functions on data cubes include reduction over space and time, applying arithmetic expressions on pixel band values, moving window aggregates over time, filtering by space, time, bands, and predicates on pixel values, exporting data cubes as netCDF or GeoTIFF files, plotting, and extraction from spatial and or spatiotemporal features. All computational parts are implemented in C++, linking to the GDAL', netCDF', CURL', and SQLite libraries. See Appel and Pebesma (2019) <doi:10.3390/data4030092> for further details.
This package provides methods to Get Water Attributes Visually in R ('gwavr'). This allows the user to point and click on areas within the United States and get back hydrological data, e.g. flowlines, catchments, basin boundaries, comids, etc.
Simplifies regression modeling in R by integrating multiple modeling and summarization tools into a cohesive, user-friendly interface. Designed to be accessible for researchers, particularly those in Low- and Middle-Income Countries (LMIC). Built upon widely accepted statistical methods, including logistic regression (Hosmer et al. 2013, ISBN:9781118548429), log-binomial regression (Spiegelman and Hertzmark 2005 <doi:10.1093/aje/kwi188>), Poisson and robust Poisson regression (Zou 2004 <doi:10.1093/aje/kwh090>), negative binomial regression (Hilbe 2011, ISBN:9780521179515), and linear regression (Kutner et al. 2005, ISBN:9780071122214). Leverages multiple dependencies to ensure high-quality output and generate reproducible, publication-ready tables in alignment with best practices in epidemiology and applied statistics.
Functionality for adding the geological timescale to bivariate plots.
Ridge regression due to Hoerl and Kennard (1970)<DOI:10.1080/00401706.1970.10488634> and generalized ridge regression due to Yang and Emura (2017)<DOI:10.1080/03610918.2016.1193195> with optimized tuning parameters. These ridge regression estimators (the HK estimator and the YE estimator) are computed by minimizing the cross-validated mean squared errors. Both the ridge and generalized ridge estimators are applicable for high-dimensional regressors (p>n), where p is the number of regressors, and n is the sample size.
This package implements the generalized Gauss Markov regression, this is useful when both predictor and response have uncertainty attached to them and also when covariance within the predictor, within the response and between the predictor and the response is present. Base on the results published in guide ISO/TS 28037 (2010) <https://www.iso.org/standard/44473.html>.
Analyze small-sample clustered or longitudinal data with binary outcome using modified generalized estimating equations (GEE) with bias-adjusted covariance estimator. The package provides any combination of three GEE methods and 12 covariance estimators.
This package provides a collection difference measures for multivariate Gaussian probability density functions, such as the Euclidea mean, the Mahalanobis distance, the Kullback-Leibler divergence, the J-Coefficient, the Minkowski L2-distance, the Chi-square divergence and the Hellinger Coefficient.
This package provides a method of recovering the precision matrix for Gaussian graphical models efficiently. Our approach could be divided into three categories. First of all, we use Hard Graphical Thresholding for best subset selection problem of Gaussian graphical model, and the core concept of this method was proposed by Luo et al. (2014) <arXiv:1407.7819>. Secondly, a closed form solution for graphical lasso under acyclic graph structure is implemented in our package (Fattahi and Sojoudi (2019) <https://jmlr.org/papers/v20/17-501.html>). Furthermore, we implement block coordinate descent algorithm to efficiently solve the covariance selection problem (Dempster (1972) <doi:10.2307/2528966>). Our package is computationally efficient and can solve ultra-high-dimensional problems, e.g. p > 10,000, in a few minutes.
This package provides extensions for various geographic spatial file formats, such as shape files and rasters. Currently provides support for the terra geographic spatial formats. See the vignettes for worked examples, demonstrations, and explanations of how to use the various package extensions.
Some methods for the inference and clustering of univariate and multivariate functional data, using a generalization of Mahalanobis distance, along with some functions useful for the analysis of functional data. For further details, see Martino A., Ghiglietti, A., Ieva, F. and Paganoni A. M. (2017) <arXiv:1708.00386>.
William S. Cleveland's book Visualizing Data is a classic piece of literature on Exploratory Data Analysis. Although it was written several decades ago, its content is still relevant as it proposes several tools which are useful to discover patterns and relationships among the data under study, and also to assess the goodness of fit o a model. This package provides functions to produce the ggplot2 versions of the visualization tools described in this book and is thought to be used in the context of courses on Exploratory Data Analysis.
This package implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Voirol, L., Xu, H., Zhang, Y., Insolia, L., Molinari, R. and Guerrier, S. (2024) <doi:10.48550/arXiv.2409.05160>. The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals in presence of missing data. The gmwmx2 package provides functions to load and plot Global Navigation Satellite System (GNSS) data from the Nevada Geodetic Laboratory and functions to estimate linear model model with correlated residuals in presence of missing data.
This package provides functions are provided for quantifying evolution and selection on complex traits. The package implements effective handling and analysis algorithms scaled for genome-wide data and calculates a composite statistic, denoted Ghat, which is used to test for selection on a trait. The package provides a number of simple examples for handling and analysing the genome data and visualising the output and results. Beissinger et al., (2018) <doi:10.1534/genetics.118.300857>.
Add, share and manage annotations for Shiny applications and R Markdown documents via hypothes.is'.
HIGHT(HIGh security and light weigHT) algorithm is a block cipher encryption algorithm developed to provide confidentiality in computing environments that demand low power consumption and lightweight, such as RFID(Radio-Frequency Identification) and USN(Ubiquitous Sensor Network), or in mobile environments that require low power consumption and lightweight, such as smartphones and smart cards. Additionally, it is designed with a simple structure that enables it to be used with basic arithmetic operations, XOR, and circular shifts in 8-bit units. This algorithm was designed to consider both safety and efficiency in a very simple structure suitable for limited environments, compared to the former 128-bit encryption algorithm SEED. In December 2010, it became an ISO(International Organization for Standardization) standard. The detailed procedure is described in Hong et al. (2006) <doi:10.1007/11894063_4>.
This package provides a set of tools supporting more flexible heatmaps. The graphics is grid-like using the old graphics system. The main function is heatmap.n2(), which is a wrapper around the various functions constructing individual parts of the heatmap, like sidebars, picket plots, legends etc. The function supports zooming and splitting, i.e., having (unlimited) small heatmaps underneath each other in one plot deriving from the same data set, e.g., clustered and ordered by a supervised clustering method.
This is a collection of functions for converting coordinates between WGS84UTM, WGS84GEO, HK80UTM, HK80GEO and HK1980GRID Coordinate Systems used in Hong Kong SAR, based on the algorithms described in Explanatory Notes on Geodetic Datums in Hong Kong by Survey and Mapping Office Lands Department, Hong Kong Government (1995).
This package provides a collection of reweighted marginal hypothesis tests for clustered data, based on reweighting methods of Williamson, J., Datta, S., and Satten, G. (2003) <doi:10.1111/1541-0420.00005>. The tests in this collection are clustered analogs to well-known hypothesis tests in the classical setting, and are appropriate for data with cluster- and/or group-size informativeness. The syntax and output of functions are modeled after common, recognizable functions native to R. Methods used in the package refer to Gregg, M., Datta, S., and Lorenz, D. (2020) <doi:10.1177/0962280220928572>, Nevalainen, J., Oja, H., and Datta, S. (2017) <doi:10.1002/sim.7288> Dutta, S. and Datta, S. (2015) <doi:10.1111/biom.12447>, Lorenz, D., Datta, S., and Harkema, S. (2011) <doi:10.1002/sim.4368>, Datta, S. and Satten, G. (2008) <doi:10.1111/j.1541-0420.2007.00923.x>, Datta, S. and Satten, G. (2005) <doi:10.1198/016214504000001583>.
This package provides a two-step double-robust method to estimate the conditional average treatment effects (CATE) with potentially high-dimensional covariate(s). In the first stage, the nuisance functions necessary for identifying CATE are estimated by machine learning methods, allowing the number of covariates to be comparable to or larger than the sample size. The second stage consists of a low-dimensional local linear regression, reducing CATE to a function of the covariate(s) of interest. The CATE estimator implemented in this package not only allows for high-dimensional data, but also has the â double robustnessâ property: either the model for the propensity score or the models for the conditional means of the potential outcomes are allowed to be misspecified (but not both). This package is based on the paper by Fan et al., "Estimation of Conditional Average Treatment Effects With High-Dimensional Data" (2022), Journal of Business & Economic Statistics <doi:10.1080/07350015.2020.1811102>.
This package provides a data only package containing commercial domestic flights that departed Houston (IAH and HOU) in 2011.
S3 functions implementing both statistical and graphical goodness-of-fit measures between observed and simulated values, mainly oriented to be used during the calibration, validation, and application of hydrological models. Missing values in observed and/or simulated values can be removed before computations. Comments / questions / collaboration of any kind are very welcomed.