Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions common to members of the SISTM team.
Social risks are increasingly becoming a critical component of health care research. One of the most common ways to identify social needs is by using ICD-10-CM "Z-codes." This package identifies social risks using varying taxonomies of ICD-10-CM Z-codes from administrative health care data. The conceptual taxonomies come from: Centers for Medicare and Medicaid Services (2021) <https://www.cms.gov/files/document/zcodes-infographic.pdf>, Reidhead (2018) <https://web.mhanet.com/>, A Arons, S DeSilvey, C Fichtenberg, L Gottlieb (2018) <https://sirenetwork.ucsf.edu/tools-resources/resources/compendium-medical-terminology-codes-social-risk-factors>.
Analyse species-habitat associations in R. Therefore, information about the location of the species (as a point pattern) is needed together with environmental conditions (as a categorical raster). To test for significance habitat associations, one of the two components is randomized. Methods are mainly based on Plotkin et al. (2000) <doi:10.1006/jtbi.2000.2158> and Harms et al. (2001) <doi:10.1111/j.1365-2745.2001.00615.x>.
Procedure to optimally split a dataset for training and testing. SPlit is based on the method of support points, which is independent of modeling methods. Please see Joseph and Vakayil (2021) <doi:10.1080/00401706.2021.1921037> for details. This work is supported by U.S. National Science Foundation grant DMREF-1921873.
Fits time trend models for routine disease surveillance tasks and returns probability distributions for a variety of quantities of interest, including age-standardized rates, period and cumulative percent change, and measures of health inequality. The models are appropriate for count data such as disease incidence and mortality data, employing a Poisson or binomial likelihood and the first-difference (random-walk) prior for unknown risk. Optionally add a covariance matrix for multiple, correlated time series models. Inference is completed using Markov chain Monte Carlo via the Stan modeling language. References: Donegan, Hughes, and Lee (2022) <doi:10.2196/34589>; Stan Development Team (2021) <https://mc-stan.org>; Theil (1972, ISBN:0-444-10378-3).
This package produces tables with descriptive statistics for continuous, categorical and dichotomous variables. It is largely based on the package gtsummary'; Sjoberg DD et al. (2021) <doi:10.32614/RJ-2021-053>.
Perform analysis of variance when the experimental units are spatially correlated. There are two methods to deal with spatial dependence: Spatial autoregressive models (see Rossoni, D. F., & Lima, R. R. (2019) <doi:10.28951/rbb.v37i2.388>) and geostatistics (see Pontes, J. M., & Oliveira, M. S. D. (2004) <doi:10.1590/S1413-70542004000100018>). For both methods, there are three multicomparison procedure available: Tukey, multivariate T, and Scott-Knott.
Stratigraphic ranges of fossil marine animal genera from Sepkoski's (2002) published compendium. No changes have been made to any taxonomic names. However, first and last appearance intervals have been updated to be consistent with stages of the International Geological Timescale. Functionality for generating a plot of Sepkoski's evolutionary fauna is also included. For specific details on the compendium see: Sepkoski, J. J. (2002). A compendium of fossil marine animal genera. Bulletins of American Paleontology, 363, pp. 1â 560 (ISBN 0-87710-450-6). Access: <https://www.biodiversitylibrary.org/item/40634#page/5/mode/1up>.
By adding dependencies to the "Suggests" field of a package's DESCRIPTION file, and then declaring that they are needed within any dependent functionality, it is often possible to significantly reduce the number of "hard" dependencies required by a package. This package provides a minimal way to declare when a suggested package is needed.
Screen for and analyze non-linear sparse direct effects in the presence of unobserved confounding using the spectral deconfounding techniques (Ä evid, Bühlmann, and Meinshausen (2020)<jmlr.org/papers/v21/19-545.html>, Guo, Ä evid, and Bühlmann (2022) <doi:10.1214/21-AOS2152>). These methods have been shown to be a good estimate for the true direct effect if we observe many covariates, e.g., high-dimensional settings, and we have fairly dense confounding. Even if the assumptions are violated, it seems like there is not much to lose, and the deconfounded models will, in general, estimate a function closer to the true one than classical least squares optimization. SDModels provides functions SDAM() for Spectrally Deconfounded Additive Models (Scheidegger, Guo, and Bühlmann (2025) <doi:10.1145/3711116>) and SDForest() for Spectrally Deconfounded Random Forests (Ulmer, Scheidegger, and Bühlmann (2025) <doi:10.1080/10618600.2025.2569602>).
This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.
This package provides a simulation-based tool made to help researchers to become familiar with multilevel variations, and to build up sampling designs for their study. This tool has two main objectives: First, it provides an educational tool useful for students, teachers and researchers who want to learn to use mixed-effects models. Users can experience how the mixed-effects model framework can be used to understand distinct biological phenomena by interactively exploring simulated multilevel data. Second, it offers research opportunities to those who are already familiar with mixed-effects models, as it enables the generation of data sets that users may download and use for a range of simulation-based statistical analyses such as power and sensitivity analysis of multilevel and multivariate data [Allegue, H., Araya-Ajoy, Y.G., Dingemanse, N.J., Dochtermann N.A., Garamszegi, L.Z., Nakagawa, S., Reale, D., Schielzeth, H. and Westneat, D.F. (2016) <doi: 10.1111/2041-210X.12659>].
Access Amazon Web Service Simple Storage Service ('S3') <https://aws.amazon.com/s3/> as if it were a file system. Interface based on the R package fs'.
Geostatistical modeling and kriging with gridded data using spatially separable covariance functions (Kronecker covariances). Kronecker products in these models provide shortcuts for solving large matrix problems in likelihood and conditional mean, making snapKrig computationally efficient with large grids. The package supplies its own S3 grid object class, and a host of methods including plot, print, Ops, square bracket replace/assign, and more. Our computational methods are described in Koch, Lele, Lewis (2020) <doi:10.7939/r3-g6qb-bq70>.
Multi-stage selection is practiced in numerous fields of life and social sciences and particularly in breeding. A special characteristic of multi-stage selection is that candidates are evaluated in successive stages with increasing intensity and effort, and only a fraction of the superior candidates is selected and promoted to the next stage. For the optimum design of such selection programs, the selection gain plays a crucial role. It can be calculated by integration of a truncated multivariate normal (MVN) distribution. While mathematical formulas for calculating the selection gain and the variance among selected candidates were developed long time ago, solutions for numerical calculation were not available. This package can also be used for optimizing multi-stage selection programs for a given total budget and different costs of evaluating the candidates in each stage.
This package provides functionality for working with tensors, alternating forms, wedge products, Stokes's theorem, and related concepts from the exterior calculus. Uses disordR discipline (Hankin, 2022, <doi:10.48550/arXiv.2210.03856>). The canonical reference would be M. Spivak (1965, ISBN:0-8053-9021-9) "Calculus on Manifolds". To cite the package in publications please use Hankin (2022) <doi:10.48550/arXiv.2210.17008>.
The Structural Topic and Sentiment-Discourse (STS) model allows researchers to estimate topic models with document-level metadata that determines both topic prevalence and sentiment-discourse. The sentiment-discourse is modeled as a document-level latent variable for each topic that modulates the word frequency within a topic. These latent topic sentiment-discourse variables are controlled by the document-level metadata. The STS model can be useful for regression analysis with text data in addition to topic modelingâ s traditional use of descriptive analysis. The method was developed in Chen and Mankad (2024) <doi:10.1287/mnsc.2022.00261>.
Create mixed models with repeated measures using natural cubic splines applied to an observed continuous time variable, as described by Donohue et al. (2023) <doi:10.1002/pst.2285>. Iterate through multiple covariance structure types until one converges. Categorize observed time according to scheduled visits. Perform subgroup analyses.
This package provides simple and powerful interfaces that facilitate interaction with ODBC data sources. Each data source gets its own unique and dedicated interface, wrapped around RODBC'. Communication settings are remembered between queries, and are managed silently in the background. The interfaces support multi-statement SQL scripts, which can be parameterised via metaprogramming structures and embedded R expressions.
This package provides a simple, light, and robust interface between R and the Scryfall card data API <https://scryfall.com/docs/api>.
This package provides a series of tools for analyzing Systems Factorial Technology data. This includes functions for plotting and statistically testing capacity coefficient functions and survivor interaction contrast functions. Houpt, Blaha, McIntire, Havig, and Townsend (2013) <doi:10.3758/s13428-013-0377-3> provide a basic introduction to Systems Factorial Technology along with examples using the sft R package.
There is variation across AgNPs due to differences in characterization techniques and testing metrics employed in studies. To address this problem, we have developed a systematic evaluation framework called sysAgNPs'. Within this framework, Distribution Entropy (DE) is utilized to measure the uncertainty of feature categories of AgNPs, Proclivity Entropy (PE) assesses the preference of these categories, and Combination Entropy (CE) quantifies the uncertainty of feature combinations of AgNPs. Additionally, a Markov chain model is employed to examine the relationships among the sub-features of AgNPs and to determine a Transition Score (TS) scoring standard that is based on steady-state probabilities. The sysAgNPs framework provides metrics for evaluating AgNPs, which helps to unravel their complexity and facilitates effective comparisons among different AgNPs, thereby advancing the scientific research and application of these AgNPs.
Performance of functional kriging, cokriging, optimal sampling and simulation for spatial prediction of functional data. The framework of spatial prediction, optimal sampling and simulation are extended from scalar to functional data. SpatFD is based on the Karhunen-Loève expansion that allows to represent the observed functions in terms of its empirical functional principal components. Based on this approach, the functional auto-covariances and cross-covariances required for spatial functional predictions and optimal sampling, are completely determined by the sum of the spatial auto-covariances and cross-covariances of the respective score components. The package provides new classes of data and functions for modeling spatial dependence structure among curves. The spatial prediction of curves at unsampled locations can be carried out using two types of predictors, and both of them report, the respective variances of the prediction error. In addition, there is a function for the determination of spatial locations sampling configuration that ensures minimum variance of spatial functional prediction. There are also two functions for plotting predicted curves at each location and mapping the surface at each time point, respectively. References Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s10260-015-0340-9>, Bohorquez, M., Giraldo, R., and Mateu, J. (2016) <doi:10.1007/s00477-016-1266-y>, Bohorquez M., Giraldo R. and Mateu J. (2021) <doi:10.1002/9781119387916>.
Applies re-sampled kernel density method to detect vote fraud. It estimates the proportion of coarse vote-shares in the observed data relative to the null hypothesis of no fraud.