Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bayesian Beta Regression, adapted for bounded discrete responses, commonly seen in survey responses. Estimation is done via Markov Chain Monte Carlo sampling, using a Gibbs wrapper around univariate slice sampler (Neal (2003) <DOI:10.1214/aos/1056562461>), as implemented in the R package MfUSampler (Mahani and Sharabiani (2017) <DOI: 10.18637/jss.v078.c01>).
Phase I/II adaptive dose-finding design for single-agent Molecularly Targeted Agent (MTA), according to the paper "Phase I/II Dose-Finding Design for Molecularly Targeted Agent: Plateau Determination using Adaptive Randomization", Riviere Marie-Karelle et al. (2016) <doi:10.1177/0962280216631763>.
View 2D/3D sections, contour plots, mesh of excursion sets for computer experiments designs, surrogates or test functions.
Computationally efficient tools for comparing all pairs of profiles in a DNA database. The expectation and covariance of the summary statistic is implemented for fast computing. Routines for estimating proportions of close related individuals are available. The use of wildcards (also called F- designation) is implemented. Dedicated functions ease plotting the results. See Tvedebrink et al. (2012) <doi:10.1016/j.fsigen.2011.08.001>. Compute the distribution of the numbers of alleles in DNA mixtures. See Tvedebrink (2013) <doi:10.1016/j.fsigss.2013.10.142>.
Different sample size calculations with different study designs. These techniques are explained by Chow (2007) <doi:10.1201/9781584889830>.
Model cell type heterogeneity of bulk renal cell carcinoma. The observed gene expression in bulk tumor sample is modeled by a log-normal distribution with the location parameter structured as a linear combination of the component-specific gene expressions.
Convert a directory structure into a JSON format. This package lets you recursively traverse a directory and convert its contents into a JSON object, making it easier to import code base from file systems into large language models.
S3 classes for multivariate optimization using the desirability function by Derringer and Suich (1980).
The distributed expectation maximization algorithms are used to solve parameters of multivariate Gaussian mixture models. The philosophy of the package is described in Guo, G. (2022) <doi:10.1080/02664763.2022.2053949>.
Exploratory analysis of a data base. Using the functions of this package is possible to filter the data set detecting atypical values (outliers) and to perform exploratory analysis through visual inspection or dispersion measures. With this package you can explore the structure of your data using several parameters at the same time joining statistical parameters with different graphics. Finally, this package aid to confirm or reject the hypothesis that your data structure presents a normal distribution. Therefore this package is useful to get a previous insight of your data before to carry out statistical analysis.
Works as an "add-on" to packages like shiny', future', as well as rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, dipsaus for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize shiny inputs without freezing the app, or how to get memory size on Linux or MacOS system. The enhancements roughly fall into these four categories: 1. shiny input widgets; 2. high-performance computing using the future package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
Model fitting and evaluation tools for double generalized linear models (DGLMs). This class of models uses one generalized linear model (GLM) to fit the specified response and a second GLM to fit the deviance of the first model.
Basic routines used in scientific coding, such as timing routines, vector/array handing functions and I/O support routines.
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()).
This package provides a common interface for applying dimensionality reduction methods, such as Principal Component Analysis ('PCA'), Independent Component Analysis ('ICA'), diffusion maps, Locally-Linear Embedding ('LLE'), t-distributed Stochastic Neighbor Embedding ('t-SNE'), and Uniform Manifold Approximation and Projection ('UMAP'). Has built-in support for sparse matrices.
Dynamic model averaging for binary and continuous outcomes.
This package provides a Bayesian clustering method for replicated time series or replicated measurements from multiple experimental conditions, e.g., time-course gene expression data. It estimates the number of clusters directly from the data using a Dirichlet-process prior. See Fu, A. Q., Russell, S., Bray, S. and Tavare, S. (2013) Bayesian clustering of replicated time-course gene expression data with weak signals. The Annals of Applied Statistics. 7(3) 1334-1361. <doi:10.1214/13-AOAS650>.
Using a Gaussian copula approach, this package generates simulated data mimicking a target real dataset. It supports normal, Poisson, empirical, and DESeq2 (negative binomial with size factors) marginal distributions. It uses an low-rank plus diagonal covariance matrix to efficiently generate omics-scale data. Methods are described in: Yang, Grant, and Brooks (2025) <doi:10.1101/2025.01.31.634335>.
Loads behavioural data from the widely used Drosophila Activity Monitor System (DAMS, TriKinetics <https://trikinetics.com/>) into the rethomics framework.
This package provides a comprehensive framework for early epidemic detection through school absenteeism surveillance. The package offers three core functionalities: (1) simulation of population structures, epidemic spread, and resulting school absenteeism patterns; (2) implementation of surveillance models that generate alerts for impending epidemics based on absenteeism data and (3) evaluation of alert timeliness and accuracy through alert time quality metrics to optimize model parameters. These tools enable public health officials and researchers to develop and assess early warning systems before implementation. Methods are based on research published in Vanderkruk et al. (2023) <doi:10.1186/s12889-023-15747-z> and Ward et al. (2019) <doi:10.1186/s12889-019-7521-7>.
This package provides a collection of widely used univariate data sets of various applied domains on applications of distribution theory. The functions allow researchers and practitioners to quickly, easily, and efficiently access and use these data sets. The data are related to different applied domains and as follows: Bio-medical, survival analysis, medicine, reliability analysis, hydrology, actuarial science, operational research, meteorology, extreme values, quality control, engineering, finance, sports and economics. The total 100 data sets are documented along with associated references for further details and uses.
R codes for distance based cell lineage reconstruction. Our methods won both sub-challenges 2 and 3 of the Allen Institute Cell Lineage Reconstruction DREAM Challenge in 2020. References: Gong et al. (2021) <doi:10.1016/j.cels.2021.05.008>, Gong et al. (2022) <doi:10.1186/s12859-022-04633-x>.
Solves quadratic programming problems using Richard L. Dykstra's cyclic projection algorithm. Routine allows for a combination of equality and inequality constraints. See Dykstra (1983) <doi:10.1080/01621459.1983.10477029> for details.
Differential Analysis of short RNA transcripts that can be modeled by either Poisson or Negative binomial distribution. The statistical methodology implemented in this package is based on the random selection of references genes (Desaulle et al. (2021) <arXiv:2103.09872>).