Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides diagnostic tools for understanding and debugging data frame joins. Analyzes key columns before joining to detect duplicates, mismatches, encoding issues, and other common problems. Explains unexpected row count changes and provides safe join wrappers with cardinality enforcement. Concepts and diagnostics build on tidy data principles as described in Wickham (2014) <doi:10.18637/jss.v059.i10>.
Individual based simulations of hybridizing populations, where the accumulation of junctions is tracked. Furthermore, mathematical equations are provided to verify simulation outcomes. Both simulations and mathematical equations are based on Janzen (2018, <doi:10.1101/058107>) and Janzen (2022, <doi:10.1111/1755-0998.13519>).
Estimate risk caused by two extreme and dependent forcing variables using bivariate extreme value models as described in Zheng, Westra, and Sisson (2013) <doi:10.1016/j.jhydrol.2013.09.054>; Zheng, Westra and Leonard (2014) <doi:10.1002/2013WR014616>; Zheng, Leonard and Westra (2015) <doi:10.2166/hydro.2015.052>.
This package provides functions to standardize and whiten data, and to perform Principal Component Analysis (PCA). The main advantage of this package over alternatives like prcomp() is, that jvcoords makes it easy to convert (additional) data between the original and the transformed coordinates. The package also provides a class coords, which can represent affine coordinate transformations. This class forms the basis of the transformations provided by the package, but can also be used independently. The implementation has been optimized to be of comparable speed (and sometimes even faster) than existing alternatives.
Set of common functions used for manipulating colors, detecting and interacting with RStudio', modeling, formatting, determining users operating system, feature scaling, and more!
Customized R Markdown templates for authoring articles for Journal of Data Science.
This package provides a Jordan algebra is an algebraic object originally designed to study observables in quantum mechanics. Jordan algebras are commutative but non-associative; they satisfy the Jordan identity. The package follows the ideas and notation of K. McCrimmon (2004, ISBN:0-387-95447-3) "A Taste of Jordan Algebras". To cite the package in publications, please use Hankin (2023) <doi:10.48550/arXiv.2303.06062>.
This package provides a calculation tool to obtain the 5-year or 10-year risk of cardiovascular disease from various risk models.
This package creates interactive trees that can be included in Shiny apps and R markdown documents. A tree allows to represent hierarchical data (e.g. the contents of a directory). Similar to the shinyTree package but offers more features and options, such as the grid extension, restricting the drag-and-drop behavior, and settings for the search functionality. It is possible to attach some data to the nodes of a tree and then to get these data in Shiny when a node is selected. Also provides a Shiny gadget allowing to manipulate one or more folders, and a Shiny module allowing to navigate in the server side file system.
The function jskm() creates publication quality Kaplan-Meier plot with at risk tables below. svyjskm() provides plot for weighted Kaplan-Meier estimator.
Procedures for joint detection of changes in both expectation and variance in univariate sequences. Performs a statistical test of the null hypothesis of the absence of change points. In case of rejection performs an algorithm for change point detection. Reference - Bivariate change point detection - joint detection of changes in expectation and variance, Scandinavian Journal of Statistics, DOI 10.1111/sjos.12547.
Some handy function in R.
Josa in Korean is often determined by judging the previous word. When writing reports using Rmd, a function that prints the appropriate investigation for each case is helpful. The josaplay package then evaluates the previous word to determine which josa is appropriate.
Reproducible work requires a record of where every statistic originated. When writing reports, some data is too big to load in the same environment and some statistics take a while to compute. This package offers a way to keep notes on statistics, simple functions, and small objects. Notepads can be locked to avoid accidental updates. Notepads keep track of who added the notes and when the notes were added. A simple text representation is used to allow for clear version histories.
Test for association between the observed data and their estimated latent variables. The jackstraw package provides a resampling strategy and testing scheme to estimate statistical significance of association between the observed data and their latent variables. Depending on the data type and the analysis aim, the latent variables may be estimated by principal component analysis (PCA), factor analysis (FA), K-means clustering, and related unsupervised learning algorithms. The jackstraw methods learn over-fitting characteristics inherent in this circular analysis, where the observed data are used to estimate the latent variables and used again to test against that estimated latent variables. When latent variables are estimated by PCA, the jackstraw enables statistical testing for association between observed variables and latent variables, as estimated by low-dimensional principal components (PCs). This essentially leads to identifying variables that are significantly associated with PCs. Similarly, unsupervised clustering, such as K-means clustering, partition around medoids (PAM), and others, finds coherent groups in high-dimensional data. The jackstraw estimates statistical significance of cluster membership, by testing association between data and cluster centers. Clustering membership can be improved by using the resulting jackstraw p-values and posterior inclusion probabilities (PIPs), with an application to unsupervised evaluation of cell identities in single cell RNA-seq (scRNA-seq).
Joint mean and dispersion effects models fit the mean and dispersion parameters of a response variable by two separate linear models, the mean and dispersion submodels, simultaneously. It also allows the users to choose either the deviance or the Pearson residuals as the response variable of the dispersion submodel. Furthermore, the package provides the possibility to nest the submodels in one another, if one of the parameters has significant explanatory power on the other. Wu & Li (2016) <doi:10.1016/j.csda.2016.04.015>.
This package implements time series z-normalization, SAX, HOT-SAX, VSM, SAX-VSM, RePair, and RRA algorithms facilitating time series motif (i.e., recurrent pattern), discord (i.e., anomaly), and characteristic pattern discovery along with interpretable time series classification.
This package provides model fitting, prediction, and plotting for joint models of longitudinal and multiple time-to-event data, including methods from Rizopoulos (2012) <doi:10.1201/b12208>. Useful for handling complex survival and longitudinal data in clinical research.
This package provides a gridded classification of weather types by applying the Jenkinson and Collison classification. For a given region (it can be either local region or the whole map),it computes at each grid the 11 weather types during the period considered for the analysis. See Otero et al., (2017) <doi:10.1007/s00382-017-3705-y> for more information.
This package provides a fast and scalable joint estimator for integrating additional knowledge in learning multiple related sparse Gaussian Graphical Models (JEEK). The JEEK algorithm can be used to fast estimate multiple related precision matrices in a large-scale. For instance, it can identify multiple gene networks from multi-context gene expression datasets. By performing data-driven network inference from high-dimensional and heterogeneous data sets, this tool can help users effectively translate aggregated data into knowledge that take the form of graphs among entities. Please run demo(jeek) to learn the basic functions provided by this package. For further details, please read the original paper: Beilun Wang, Arshdeep Sekhon, Yanjun Qi "A Fast and Scalable Joint Estimator for Integrating Additional Knowledge in Learning Multiple Related Sparse Gaussian Graphical Models" (ICML 2018) <arXiv:1806.00548>.
This package provides a set of functions to compute the Hodrick-Prescott (HP) filter with automatically selected jumps. The original HP filter extracts a smooth trend from a time series, and our version allows for a small number of automatically identified jumps. See Maranzano and Pelagatti (2024) <doi:10.2139/ssrn.4896170> for details.
This package provides a mainly instrumental package meant to allow other packages whose core is written in C++ to read, write and manipulate matrices in a binary format so that the memory used for them is no more than strictly needed. Its functionality is already inside parallelpam and scellpam', so if you have installed any of these, you do not need to install jmatrix'. Using just the needed memory is not always true with R matrices or vectors, since by default they are of double type. Trials like the float package have been done, but to use them you have to coerce a matrix already loaded in R memory to a float matrix, and then you can delete it. The problem comes when your computer has not memory enough to hold the matrix in the first place, so you are forced to load it by chunks. This is the problem this package tries to address (with partial success, but this is a difficult problem since R is not a strictly typed language, which is anyway quite hard to get in an interpreted language). This package allows the creation and manipulation of full, sparse and symmetric matrices of any standard data type.
This package provides a small package containing functions to perform a joint calibration of totals and quantiles. The calibration for totals is based on Deville and Särndal (1992) <doi:10.1080/01621459.1992.10475217>, the calibration for quantiles is based on Harms and Duchesne (2006) <https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X20060019255>. The package uses standard calibration via the survey', sampling or laeken packages. In addition, entropy balancing via the ebal package and empirical likelihood based on codes from Wu (2005) <https://www150.statcan.gc.ca/n1/pub/12-001-x/2005002/article/9051-eng.pdf> can be used. See the paper by BerÄ sewicz and Szymkowiak (2023) for details <arXiv:2308.13281>.
Approximate joint-inclusion probabilities in Unequal Probability Sampling, or compute Monte Carlo approximations of the first and second-order inclusion probabilities of a general sampling design as in Fattorini (2006) <doi:10.1093/biomet/93.2.269>.