Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Toolbox for chemometrics analysis of bidimensional gas chromatography data. This package import data for common scientific data format (NetCDF) and fold it to 2D chromatogram. Then, it can perform preprocessing and multivariate analysis. In the preprocessing algorithms, baseline correction, smoothing, and peak alignment are available. While in multivariate analysis, multiway principal component analysis is incorporated.
The provided package implements the statistical tests for the functional repeated measures analysis problem (Kurylo and Smaga, 2023, <arXiv:2306.03883>). These procedures enable us to verify the overall hypothesis regarding equality, as well as hypotheses for pairwise comparisons (i.e., post hoc analysis) of mean functions corresponding to repeated experiments.
This package provides functions for connecting to and interfacing with an Arduino or similar device. Functionality includes uploading of sketches, setting and reading digital and analog pins, and rudimentary servo control. This project is not affiliated with the Arduino company, <https://www.arduino.cc/>.
Estimation, forecasting, simulation, and portfolio construction for regime-switching models with exogenous variables as in Pelletier (2006) <doi:10.1016/j.jeconom.2005.01.013>.
Decoupled (e.g. separate averages) and censored (e.g. > 100 species) variables are continually reported by many well-established organizations (e.g. World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), World Bank, and various national censuses). The challenge therefore is to infer what the original data could have been given summarized information. We present an R package that reverse engineers decoupled and/or censored count data with two main functions. The cnbinom.pars function estimates the average and dispersion parameter of a censored univariate frequency table. The rec function reverse engineers summarized data into an uncensored bivariate table of probabilities.
Download and access datasets from the Rdatasets archive (<https://vincentarelbundock.github.io/Rdatasets/>). The package provides functions to search, download, and view documentation for thousands of datasets from various R packages, available in both CSV and Parquet formats for efficient access.
Inverse normal transformation (INT) based genetic association testing. These tests are recommend for continuous traits with non-normally distributed residuals. INT-based tests robustly control the type I error in settings where standard linear regression does not, as when the residual distribution exhibits excess skew or kurtosis. Moreover, INT-based tests outperform standard linear regression in terms of power. These tests may be classified into two types. In direct INT (D-INT), the phenotype is itself transformed. In indirect INT (I-INT), phenotypic residuals are transformed. The omnibus test (O-INT) adaptively combines D-INT and I-INT into a single robust and statistically powerful approach. See McCaw ZR, Lane JM, Saxena R, Redline S, Lin X. "Operating characteristics of the rank-based inverse normal transformation for quantitative trait analysis in genome-wide association studies" <doi:10.1111/biom.13214>.
Streamlines the interaction with the RCSB Protein Data Bank ('PDB') <https://www.rcsb.org/>. This interface offers an intuitive and powerful tool for searching and retrieving a diverse range of data types from the PDB'. It includes advanced functionalities like BLAST and sequence motif queries. Built upon the existing XML-based API of the PDB', it simplifies the creation of custom requests, thereby enhancing usability and flexibility for researchers.
This package provides functions to complete three-dimensional rock fabric and strain analyses following the Rf Phi, Fry, and normalized Fry methods. Also allows for plotting of results and interactive 3D visualization functionality.
PADRINO houses textual representations of Integral Projection Models which can be converted from their table format into full kernels to reproduce or extend an already published analysis. Rpadrino is an R interface to this database. For more information on Integral Projection Models, see Easterling et al. (2000) <doi:10.1890/0012-9658(2000)081[0694:SSSAAN]2.0.CO;2>, Merow et al. (2013) <doi:10.1111/2041-210X.12146>, Rees et al. (2014) <doi:10.1111/1365-2656.12178>, and Metcalf et al. (2015) <doi:10.1111/2041-210X.12405>. See Levin et al. (2021) for more information on ipmr', the engine that powers model reconstruction <doi:10.1111/2041-210X.13683>.
Predict fish year-class strength by calibration regression analysis of multiple recruitment index series.
Native R interface to TMB (Template Model Builder) so models can be written entirely in R rather than C++'. Automatic differentiation, to any order, is available for a rich subset of R features, including linear algebra for dense and sparse matrices, complex arithmetic, Fast Fourier Transform, probability distributions and special functions. RTMB provides easy access to model fitting and validation following the principles of Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., & Bell, B. M. (2016) <DOI:10.18637/jss.v070.i05> and Thygesen, U.H., Albertsen, C.M., Berg, C.W. et al. (2017) <DOI:10.1007/s10651-017-0372-4>.
Robust Location and Scatter Estimation and Robust Multivariate Analysis with High Breakdown Point for Incomplete Data (missing values) (Todorov et al. (2010) <doi:10.1007/s11634-010-0075-2>).
This package provides functions to read and write ImageJ (<https://imagej.net>) Region of Interest (ROI) files, to plot the ROIs and to convert them to spatstat (<https://spatstat.org/>) spatial patterns.
Este paquete proporciona una interfaz grafica de usuario (GUI) para algunos de los procedimientos estadisticos detallados en un curso de Estadistica aplicada a las Ciencias Sociales mediante el programa informatico R (EACSPIR). LA GUI se ha desarrollado como un Plugin del programa R-Commander.
This package provides a series of functions to aid in repeated tasks for Rmd documents. All details are to my personal preference, though I am happy to add flexibility if there are use cases I am missing. I will continue updating with new functions as I add utility functions for myself.
Multiscale Curvature Classification of ground returns in 3-D LiDAR point clouds, designed for forested environments. RMCC is a porting to R of the MCC-lidar method by Evans and Hudak (2007) <doi:10.1109/TGRS.2006.890412>.
MCFS-ID (Monte Carlo Feature Selection and Interdependency Discovery) is a Monte Carlo method-based tool for feature selection. It also allows for the discovery of interdependencies between the relevant features. MCFS-ID is particularly suitable for the analysis of high-dimensional, small n large p transactional and biological data. M. Draminski, J. Koronacki (2018) <doi:10.18637/jss.v085.i12>.
Allows to limit the rate at which one or more functions can be called.
The parametric Bayes analysis for the restricted mean survival time (RMST) with cluster effect, as described in Hanada and Kojima (2024) <doi:10.48550/arXiv.2406.06071>. Bayes estimation with random-effect and frailty-effect can be applied to several parametric models useful in survival time analysis. The RMST under these parametric models can be computed from the obtained posterior samples.
Handle climate data from the DWD ('Deutscher Wetterdienst', see <https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html> for more information). Choose observational time series from meteorological stations with selectDWD()'. Find raster data from radar and interpolation according to <https://brry.github.io/rdwd/raster-data.html>. Download (multiple) data sets with progress bars and no re-downloads through dataDWD()'. Read both tabular observational data and binary gridded datasets with readDWD()'.
This package provides functions to manipulate rational functions, including basic arithmetic operators, derivatives, and integrals with EXPLICIT forms.
This package provides a toolkit for Commodities analytics', risk management and trading professionals. Includes functions for API calls to <https://commodities.morningstar.com/#/>, <https://developer.genscape.com/>, and <https://www.bankofcanada.ca/valet/docs>.
This package produces Shiny applications for different types of popular functional data analyses. The functional data analyses are implemented in the refund package, then refund.shiny reads in the refund object and implements an object-specific set of plots based on the object class using S3.