Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package contains functions to obtain the operational characteristics of bioequivalence studies in Two-Stage Designs (TSD) via simulations.
Computes the Owen's T function or the bivariate normal integral using one of the following: modified Euler's arctangent series, tetrachoric series, or Vasicek's series. For the methods, see Komelj, J. (2023) <doi:10.4236/ajcm.2023.134026> (or reprint <arXiv:2312.00011> with better typography) and Vasicek, O. A. (1998) <doi:10.21314/JCF.1998.015>.
This package provides a power analysis tool for jointly testing the cause-1 cause-specific hazard and the any-cause hazard with competing risks data.
This package contains functions to simulate the most commonly used SAS® procedures. Specifically, the package aims to simulate the functionality of proc freq', proc means', proc ttest', proc reg', proc transpose', proc sort', and proc print'. The simulation will include recreating all statistics with the highest fidelity possible.
Bundles a number of established statistical methods to facilitate the visual interpretation of large datasets in sedimentary geology. Includes functionality for adaptive kernel density estimation, principal component analysis, correspondence analysis, multidimensional scaling, generalised procrustes analysis and individual differences scaling using a variety of dissimilarity measures. Univariate provenance proxies, such as single-grain ages or (isotopic) compositions are compared with the Kolmogorov-Smirnov, Kuiper, Wasserstein-2 or Sircombe-Hazelton L2 distances. Categorical provenance proxies such as chemical compositions are compared with the Aitchison and Bray-Curtis distances,and count data with the chi-square distance. Varietal data can either be converted to one or more distributional datasets, or directly compared using the multivariate Wasserstein distance. Also included are tools to plot compositional and count data on ternary diagrams and point-counting data on radial plots, to calculate the sample size required for specified levels of statistical precision, and to assess the effects of hydraulic sorting on detrital compositions. Includes an intuitive query-based user interface for users who are not proficient in R.
Implementation of class "polyMatrix" for storing a matrix of polynomials and implements basic matrix operations; including a determinant and characteristic polynomial. It is based on the package polynom and uses a lot of its methods to implement matrix operations. This package includes 3 methods of triangularization of polynomial matrices: Extended Euclidean algorithm which is most classical but numerically unstable; Sylvester algorithm based on LQ decomposition; Interpolation algorithm is based on LQ decomposition and Newton interpolation. Both methods are described in D. Henrion & M. Sebek, Reliable numerical methods for polynomial matrix triangularization, IEEE Transactions on Automatic Control (Volume 44, Issue 3, Mar 1999, Pages 497-508) <doi:10.1109/9.751344> and in Salah Labhalla, Henri Lombardi & Roger Marlin, Algorithmes de calcule de la reduction de Hermite d'une matrice a coefficients polynomeaux, Theoretical Computer Science (Volume 161, Issue 1-2, July 1996, Pages 69-92) <doi:10.1016/0304-3975(95)00090-9>.
An implementation of prediction intervals for overdispersed count data, for overdispersed binomial data and for linear random effects models.
This package provides a figure region is prepared, creating a plot region with suitable background color, grid lines or shadings, and providing axes and labeling if not suppressed. Subsequently, information carrying graphics elements can be added (points, lines, barplot with add=TRUE and so forth).
This package provides the probability, distribution, and quantile functions and random number generator for the Poisson-Binomial distribution. This package relies on FFTW to implement the discrete Fourier transform, so that it is much faster than the existing implementation of the same algorithm in R.
This package provides a quadratic time dynamic programming algorithm can be used to compute an approximate solution to the problem of finding the most likely changepoints with respect to the Poisson likelihood, subject to a constraint on the number of segments, and the changes which must alternate: up, down, up, down, etc. For more info read <http://proceedings.mlr.press/v37/hocking15.html> "PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data" by TD Hocking et al, proceedings of ICML2015.
This package provides tools for the design of prospective studies using Personalised Synthetic Controls. Can be used in either single arm or randomised studies.
This package provides functions for causal structure learning and causal inference using graphical models. The main algorithms for causal structure learning are PC (for observational data without hidden variables), FCI and RFCI (for observational data with hidden variables), and GIES (for a mix of data from observational studies (i.e. observational data) and data from experiments involving interventions (i.e. interventional data) without hidden variables). For causal inference the IDA algorithm, the Generalized Backdoor Criterion (GBC), the Generalized Adjustment Criterion (GAC) and some related functions are implemented. Functions for incorporating background knowledge are provided.
Global univariate minimization of Lipschitz functions is performed by using Pijavski method, which was published in Pijavski (1972) <DOI:10.1016/0041-5553(72)90115-2>.
This package provides functions to read and write APE-compatible phylogenetic trees in NEXUS and Newick formats, while preserving annotations.
Price volatility refers to the degree of variation in series over a certain period of time. This volatility is especially noticeable in agricultural commodities, adding uncertainty for farmers, traders, and others in the agricultural supply chain. Commonly and popularly used four volatility models viz, GARCH, Glosten Jagannatan Runkle-GARCH (GJR-GARCH) model, exponentially weighted moving average (EWMA) model and Multiplicative Error Model (MEM) are selected and implemented. PWAVE, weighted ensemble model based on particle swarm optimization (PSO) is proposed to combine the forecast obtained from all the candidate models. This package has been developed using algorithm of Paul et al. <doi:10.1007/s40009-023-01218-x> and Yeasin and Paul (2024) <doi:10.1007/s11227-023-05542-3>.
Allows specification and fitting of some parameter estimation examples inspired by time-resolved spectroscopy via a Shiny GUI.
Full dynamic system to describe and forecast the spread and the severity of a developing pandemic, based on available data. These data are number of infections, hospitalizations, deaths and recoveries notified each day. The system consists of three transitions, infection-infection, infection-hospital and hospital-death/recovery. The intensities of these transitions are dynamic and estimated using non-parametric local linear estimators. The package can be used to provide forecasts and survival indicators such as the median time spent in hospital and the probability that a patient who has been in hospital for a number of days can leave it alive. Methods are described in Gámiz, Mammen, Martà nez-Miranda, and Nielsen (2024) <doi:10.48550/arXiv.2308.09918> and <doi:10.48550/arXiv.2308.09919>.
Basic functions to fit and predict periodic autoregressive time series models. These models are discussed in the book P.H. Franses (1996) "Periodicity and Stochastic Trends in Economic Time Series", Oxford University Press. Data set analyzed in that book is also provided. NOTE: the package was orphaned during several years. It is now only maintained, but no major enhancements are expected, and the maintainer cannot provide any support.
Computational infrastructure for biogeography, community ecology, and biodiversity conservation (Daru et al. 2020) <doi:10.1111/2041-210X.13478>. It is based on the methods described in Daru et al. (2020) <doi:10.1038/s41467-020-15921-6>. The original conceptual work is described in Daru et al. (2017) <doi:10.1016/j.tree.2017.08.013> on patterns and processes of biogeographical regionalization. Additionally, the package contains fast and efficient functions to compute more standard conservation measures such as phylogenetic diversity, phylogenetic endemism, evolutionary distinctiveness and global endangerment, as well as compositional turnover (e.g., beta diversity).
Allows for data to be transformed before using it to construct models. Builds structures to allow functions in the PMML package to output transformation details in addition to the model in the resulting PMML file. The Predictive Model Markup Language (PMML) is an XML-based language which provides a way for applications to define machine learning, statistical and data mining models and to share models between PMML compliant applications. More information about the PMML industry standard and the Data Mining Group can be found at <http://www.dmg.org>. The generated PMML can be imported into any PMML consuming application, such as Zementis Predictive Analytics products, which integrate with web services, relational database systems and deploy natively on Hadoop in conjunction with Hive, Spark or Storm, as well as allow predictive analytics to be executed for IBM z Systems mainframe applications and real-time, streaming analytics platforms.
The Penn World Table 9.x (<http://www.ggdc.net/pwt/>) provides information on relative levels of income, output, inputs, and productivity for 182 countries between 1950 and 2017.
Includes functions implementing the conditionally optimal matching algorithm, which can be used to generate matched samples in designs with multiple groups. The algorithm is described in Nattino, Song and Lu (2022) <doi:10.1016/j.csda.2021.107364>.
This package provides a profile boosting framework for feature selection in parametric models. It offers a unified interface pboost() and several wrapped models, including linear model, generalized linear models, quantile regression, Cox proportional hazards model, beta regression. An S3 interface EBIC() is provided as the stopping rule for the profile boosting by default.
Extract and interact with data from the Scottish Health and Social Care Open Data platform <https://www.opendata.nhs.scot>.