Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a shortcut procedure is proposed to implement closed testing for large-scale multiple testings, especially with the global test. This shortcut is asymptotically equivalent to closed testing and post hoc. Users could detect any possible sets of features or pathways with family-wise error rate controlled. The global test is powerful to detect associations between a group of features and an outcome of interest.
Classification of climate according to Koeppen - Geiger, of aridity indices, of continentality indices, of water balance after Thornthwaite, of viticultural bioclimatic indices. Drawing climographs: Thornthwaite, Peguy, Bagnouls-Gaussen.
Expectation-Maximization (EM) algorithm for point estimation and variance estimation to the nonparametric maximum likelihood estimator (NPMLE) for logistic-Cox cure-rate model with left truncation and right- censoring. See Hou, Chambers and Xu (2017) <doi:10.1007/s10985-017-9415-2>.
This package provides comprehensive tools for extracting and analyzing scientific content from PDF documents, including citation extraction, reference matching, text analysis, and bibliometric indicators. Supports multi-column PDF layouts, CrossRef API <https://www.crossref.org/documentation/retrieve-metadata/rest-api/> integration, and advanced citation parsing.
This function conducts the Cochran-Armitage trend test to a 2 by k contingency table. It will report the test statistic (Z) and p-value.A linear trend in the frequencies will be calculated, because the weights (0,1,2) will be used by default.
When taking online surveys, participants sometimes respond to items without regard to their content. These types of responses, referred to as careless or insufficient effort responding, constitute significant problems for data quality, leading to distortions in data analysis and hypothesis testing, such as spurious correlations. The R package careless provides solutions designed to detect such careless / insufficient effort responses by allowing easy calculation of indices proposed in the literature. It currently supports the calculation of longstring, even-odd consistency, psychometric synonyms/antonyms, Mahalanobis distance, and intra-individual response variability (also termed inter-item standard deviation). For a review of these methods, see Curran (2016) <doi:10.1016/j.jesp.2015.07.006>.
Set of functions for the easy analyses of conditioning data.
Create correlation (or partial correlation) matrices. Correlation matrices are formatted with significance stars based on user preferences. Matrices of coefficients, p-values, and number of pairwise observations are returned. Send resultant formatted matrices to the clipboard to be pasted into excel and other programs. A plot method allows users to visualize correlation matrices created with corx'.
Fit multiclass Classification version of Bayesian Adaptive Smoothing Splines (CBASS) to data using reversible jump MCMC. The multiclass classification problem consists of a response variable that takes on unordered categorical values with at least three levels, and a set of inputs for each response variable. The CBASS model consists of a latent multivariate probit formulation, and the means of the latent Gaussian random variables are specified using adaptive regression splines. The MCMC alternates updates of the latent Gaussian variables and the spline parameters. All the spline parameters (variables, signs, knots, number of interactions), including the number of basis functions used to model each latent mean, are inferred. Functions are provided to process inputs, initialize the chain, run the chain, and make predictions. Predictions are made on a probabilistic basis, where, for a given input, the probabilities of each categorical value are produced. See Marrs and Francom (2023) "Multiclass classification using Bayesian multivariate adaptive regression splines" Under review.
This package provides Capital Budgeting Analysis functionality and the essential Annuity loan functions. Also computes Loan Amortization Schedules including schedules with irregular payments.
This package performs copy number variants association analysis with Lasso and Weighted Fusion penalized regression. Creates a "CNV profile curve" to represent an individualâ s CNV events across a genomic region so to capture variations in CNV length and dosage. When evaluating association, the CNV profile curve is directly used as a predictor in the regression model, avoiding the need to predefine CNV loci. CNV profile regression estimates CNV effects at each genome position, making the results comparable across different studies. The penalization encourages sparsity in variable selection with a Lasso penalty and encourages effect smoothness between consecutive CNV events with a weighted fusion penalty, where the weight controls the level of smoothing between adjacent CNVs. For more details, see Si (2024) <doi:10.1101/2024.11.23.624994>.
This package provides tools to visualize the results of a classification or a regression. The graphical displays include stacked plots, silhouette plots, quasi residual plots, class maps, predictions plots, and predictions correlation plots. Implements the techniques described and illustrated in Raymaekers J., Rousseeuw P.J., Hubert M. (2022). Class maps for visualizing classification results. \emphTechnometrics, 64(2), 151â 165. \doi10.1080/00401706.2021.1927849 (open access), Raymaekers J., Rousseeuw P.J.(2022). Silhouettes and quasi residual plots for neural nets and tree-based classifiers. \emphJournal of Computational and Graphical Statistics, 31(4), 1332â 1343. \doi10.1080/10618600.2022.2050249, and Rousseeuw, P.J. (2025). Explainable Linear and Generalized Linear Models by the Predictions Plot. <doi:10.48550/arXiv.2412.16980> (open access). Examples can be found in the vignettes: "Discriminant_analysis_examples","K_nearest_neighbors_examples", "Support_vector_machine_examples", "Rpart_examples", "Random_forest_examples", "Neural_net_examples", and "predsplot_examples".
Explore and normalize American campaign finance data. Created by the Investigative Reporting Workshop to facilitate work on The Accountability Project, an effort to collect public data into a central, standard database that is more easily searched: <https://publicaccountability.org/>.
This package provides tools for advanced analysis of continuous glucose monitoring (CGM) time-series, implementing GRID (Glucose Rate Increase Detector) and GRID-based algorithms for postprandial peak detection, and detection of hypoglycemic and hyperglycemic episodes (Levels 1/2/Extended) aligned with international consensus CGM metrics. Core algorithms are implemented in optimized C++ using Rcpp to provide accurate and fast analysis on large datasets.
Create rich command line applications, with colors, headings, lists, alerts, progress bars, etc. It uses CSS for custom themes. This package is now superseded by the cli package. Please use cli instead in new projects.
Calculates the chilling and heat accumulation for studies of the temperate fruit trees. The models in this package are: Utah (Richardson et al., 1974, ISSN:0018-5345), Positive Chill Units - PCU (Linsley-Noaks et al., 1995, ISSN:1017-0316), GDH-A - Growing Degree Hours by Anderson et al.(1986, ISSN:0567-7572), GDH-R - Growing Degree Hours by Richardson et al.(1975, ISSN:0018-5345), North Carolina (Shaltout e Unrath, 1983, ISSN:0003-1062), Landsberg Model (Landsberg, 1974, ISSN:0305-7364), Q10 Model (Bidabe, 1967, ISSN:0031-9368), Jones Model (Jones et al., 2013 <DOI:10.1111/j.1438-8677.2012.00590.x>), Low-Chill Model (Gilreath and Buchanan, 1981, ISSN:0003-1062), Model for Cherry "Sweetheart" (Guak and Nielsen, 2013 <DOI:10.1007/s13580-013-0140-9>), Model for apple "Gala" (Guak and Nielsen, 2013 <DOI:10.1007/s13580-013-0140-9>), Taiwan Model (Lu et al., 2012 <DOI:10.17660/ActaHortic.2012.962.35>), Dynamic Model (Fishman et al., 1987, ISSN:0022-5193) adapted from the function Dynamic_Model() of the chillR package (Luedeling, 2018), Unified Model (Chuine et al., 2016 <DOI:10.1111/gcb.13383>) and Heat Restriction model.
This package provides functions for calculating clinical significance.
Browser cookies are name-value pairs that are saved in a user's browser by a website. Cookies allow websites to persist information about the user and their use of the website. Here we provide tools for working with cookies in shiny apps, in part by wrapping the js-cookie JavaScript library <https://github.com/js-cookie/js-cookie>.
Composite Kernel Machine Regression based on Likelihood Ratio Test (CKLRT): in this package, we develop a kernel machine regression framework to model the overall genetic effect of a SNP-set, considering the possible GE interaction. Specifically, we use a composite kernel to specify the overall genetic effect via a nonparametric function and we model additional covariates parametrically within the regression framework. The composite kernel is constructed as a weighted average of two kernels, one corresponding to the genetic main effect and one corresponding to the GE interaction effect. We propose a likelihood ratio test (LRT) and a restricted likelihood ratio test (RLRT) for statistical significance. We derive a Monte Carlo approach for the finite sample distributions of LRT and RLRT statistics. (N. Zhao, H. Zhang, J. Clark, A. Maity, M. Wu. Composite Kernel Machine Regression based on Likelihood Ratio Test with Application for Combined Genetic and Gene-environment Interaction Effect (Submitted).).
This package provides functions for classical test theory analysis, following methods presented by Wu et al. (2006) <doi:10.1007/978-981-10-3302-5>.
This package provides a tool that implements the clustering algorithms from mothur (Schloss PD et al. (2009) <doi:10.1128/AEM.01541-09>). clustur make use of the cluster() and make.shared() command from mothur'. Our cluster() function has five different algorithms implemented: OptiClust', furthest', nearest', average', and weighted'. OptiClust is an optimized clustering method for Operational Taxonomic Units, and you can learn more here, (Westcott SL, Schloss PD (2017) <doi:10.1128/mspheredirect.00073-17>). The make.shared() command is always applied at the end of the clustering command. This functionality allows us to generate and create clustering and abundance data efficiently.
This package provides a basic implementation of the change in mean detection method outlined in: Taylor, Wayne A. (2000) <https://variation.com/wp-content/uploads/change-point-analyzer/change-point-analysis-a-powerful-new-tool-for-detecting-changes.pdf>. The package recursively uses the mean-squared error change point calculation to identify candidate change points. The candidate change points are then re-estimated and Taylor's backwards elimination process is then employed to come up with a final set of change points. Many of the underlying functions are written in C++ for improved performance.
This package provides functions to access data from public RESTful APIs including FINDIC API', REST Countries API', World Bank API', and Nager.Date', retrieving real-time or historical data related to Chile such as financial indicators, holidays, international demographic and geopolitical indicators, and more. Additionally, the package includes curated datasets related to Chile, covering topics such as human rights violations during the Pinochet regime, electoral data, census samples, health surveys, seismic events, territorial codes, and environmental measurements. The package supports research and analysis focused on Chile by integrating open APIs with high-quality datasets from multiple domains. For more information on the APIs, see: FINDIC <https://findic.cl/>, REST Countries <https://restcountries.com/>, World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>, and Nager.Date <https://date.nager.at/Api>.
Optimization solver based on the Cross-Entropy method.