Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for spatial methods based on generalized estimating equations (GEE) and wavelet-revised methods (WRM), functions for scaling by wavelet multiresolution regression (WMRR), conducting multi-model inference, and stepwise model selection. Further, contains functions for spatially corrected model accuracy measures.
Combine topic modeling and sentiment analysis to identify individual students gaps, and highlight their strengths and weaknesses across predefined competency domains and professional activities.
This package provides functions to calculate indices for soundscape ecology and other ecology research that uses audio recordings.
This package provides function for small area estimation at area level using averaging pseudo area level model for variables of interest. A dataset produced by data generation is also provided. This package estimates small areas at the village level and then aggregates them to the sub-district, region, and provincial levels.
This package provides a graphical and automated pipeline for the analysis of short time-series in R ('santaR'). This approach is designed to accommodate asynchronous time sampling (i.e. different time points for different individuals), inter-individual variability, noisy measurements and large numbers of variables. Based on a smoothing splines functional model, santaR is able to detect variables highlighting significantly different temporal trajectories between study groups. Designed initially for metabolic phenotyping, santaR is also suited for other Systems Biology disciplines. Command line and graphical analysis (via a shiny application) enable fast and parallel automated analysis and reporting, intuitive visualisation and comprehensive plotting options for non-specialist users.
This package provides an interface to shiny inputs used for filtering vectors, data.frames, and other objects. S7'-based implementation allows for seamless extensibility.
This package implements a Bayesian hierarchical model designed to identify skips in mobile menstrual cycle self-tracking on mobile apps. Future developments will allow for the inclusion of covariates affecting cycle mean and regularity, as well as extra information regarding tracking non-adherence. Main methods to be outlined in a forthcoming paper, with alternative models from Li et al. (2022) <doi:10.1093/jamia/ocab182>.
Hierarchical multistate models are considered to perform the analysis of independent/clustered semi-competing risks data. The package allows to choose the specification for model components from a range of options giving users substantial flexibility, including: accelerated failure time or proportional hazards regression models; parametric or non-parametric specifications for baseline survival functions and cluster-specific random effects distribution; a Markov or semi-Markov specification for terminal event following non-terminal event. While estimation is mainly performed within the Bayesian paradigm, the package also provides the maximum likelihood estimation approach for several parametric models. The package also includes functions for univariate survival analysis as complementary analysis tools.
Simulates regression models, including both simple regression and generalized linear mixed models with up to three level of nesting. Power simulations that are flexible allowing the specification of missing data, unbalanced designs, and different random error distributions are built into the package.
Seeded Sequential LDA can classify sentences of texts into pre-define topics with a small number of seed words (Watanabe & Baturo, 2023) <doi:10.1177/08944393231178605>. Implements Seeded LDA (Lu et al., 2010) <doi:10.1109/ICDMW.2011.125> and Sequential LDA (Du et al., 2012) <doi:10.1007/s10115-011-0425-1> with the distributed LDA algorithm (Newman, et al., 2009) for parallel computing.
Download data from StatsWales into R. Removes the need for the user to write their own loops when parsing data from the StatsWales API. Provides functions for datasets (<http://open.statswales.gov.wales/en-gb/dataset>) and metadata (<http://open.statswales.gov.wales/en-gb/discover/metadata>) endpoints.
User-friendly functions which parse output of command line programs used to query Slurm. Morris A. Jette and Tim Wickberg (2023) <doi:10.1007/978-3-031-43943-8_1> describe Slurm in detail.
Models with skewâ normally distributed and thus asymmetric error terms, implementing the methods developed in Badunenko and Henderson (2023) "Production analysis with asymmetric noise" <doi:10.1007/s11123-023-00680-5>. The package provides tools to estimate regression models with skewâ normal error terms, allowing both the variance and skewness parameters to be heteroskedastic. It also includes a stochastic frontier framework that accommodates both i.i.d. and heteroskedastic inefficiency terms.
This package provides function to apply "Subgroup Identification based on Differential Effect Search" (SIDES) method proposed by Lipkovich et al. (2011) <doi:10.1002/sim.4289>.
Fits single-species, multi-species, and integrated non-spatial and spatial occupancy models using Markov Chain Monte Carlo (MCMC). Models are fit using Polya-Gamma data augmentation detailed in Polson, Scott, and Windle (2013) <doi:10.1080/01621459.2013.829001>. Spatial models are fit using either Gaussian processes or Nearest Neighbor Gaussian Processes (NNGP) for large spatial datasets. Details on NNGP models are given in Datta, Banerjee, Finley, and Gelfand (2016) <doi:10.1080/01621459.2015.1044091> and Finley, Datta, and Banerjee (2022) <doi:10.18637/jss.v103.i05>. Provides functionality for data integration of multiple single-species occupancy data sets using a joint likelihood framework. Details on data integration are given in Miller, Pacifici, Sanderlin, and Reich (2019) <doi:10.1111/2041-210X.13110>. Details on single-species and multi-species models are found in MacKenzie, Nichols, Lachman, Droege, Royle, and Langtimm (2002) <doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2> and Dorazio and Royle <doi:10.1198/016214505000000015>, respectively.
This package provides methods for spatial and spatio-temporal smoothing of demographic and health indicators using survey data, with particular focus on estimating and projecting under-five mortality rates, described in Mercer et al. (2015) <doi:10.1214/15-AOAS872>, Li et al. (2019) <doi:10.1371/journal.pone.0210645>, Wu et al. (DHS Spatial Analysis Reports No. 21, 2021), and Li et al. (2023) <doi:10.48550/arXiv.2007.05117>.
This package provides a sparklyr <https://spark.posit.co/> extension that provides an R interface for XGBoost <https://github.com/dmlc/xgboost> on Apache Spark'. XGBoost is an optimized distributed gradient boosting library.
This package provides option settings management that goes beyond R's default options function. With this package, users can define their own option settings manager holding option names, default values and (if so desired) ranges or sets of allowed option values that will be automatically checked. Settings can then be retrieved, altered and reset to defaults with ease. For R programmers and package developers it offers cloning and merging functionality which allows for conveniently defining global and local options, possibly in a multilevel options hierarchy. See the package vignette for some examples concerning functions, S4 classes, and reference classes. There are convenience functions to reset par() and options() to their factory defaults'.
Various self-controlled case series models used to investigate associations between time-varying exposures such as vaccines or other drugs or non drug exposures and an adverse event can be fitted. Detailed information on the self-controlled case series method and its extensions with more examples can be found in Farrington, P., Whitaker, H., and Ghebremichael Weldeselassie, Y. (2018, ISBN: 978-1-4987-8159-6. Self-controlled Case Series studies: A modelling Guide with R. Boca Raton: Chapman & Hall/CRC Press) and <https://sccs-studies.info/index.html>.
This comprehensive toolkit for skewed regression is designated as "SLIC" (The LIC for Distributed Skewed Regression Analysis). It is predicated on the assumption that the error term follows a skewed distribution, such as the Skew-Normal, Skew-t, or Skew-Laplace. The methodology and theoretical foundation of the package are described in Guo G.(2020) <doi:10.1080/02664763.2022.2053949>.
This package creates SEER (Surveillance, Epidemiology and End Results) and A-bomb data binaries from ASCII sources and provides tools for estimating SEER second cancer risks. Methods are described in <doi:10.1038/leu.2015.258>.
The spork syntax describes label formatting concisely, supporting mixed nesting of subscripts and superscripts to arbitrary depth. It intends to be easy to read and write in plain text, and easy to convert to equivalent presentations in plotmath', latex', and html'. Greek symbols and a multiplication symbol are explicitly supported. See ?as_spork and ?as_previews.
This package provides methods to fit robust alternatives to commonly used models used in Small Area Estimation. The methods here used are based on best linear unbiased predictions and linear mixed models. At this time available models include area level models incorporating spatial and temporal correlation in the random effects.
Starting from a Regression Model, it provides a stepwise procedure to select the linear predictor.