Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for examining measurement invariance via equivalence testing are included in this package. The traditionally used RMSEA (Root Mean Square Error of Approximation) cutoff values are adjusted based on simulation results. In addition, a projection-based method is implemented to test the equality of latent factor means across groups without assuming the equality of intercepts. For more information, see Yuan, K. H., & Chan, W. (2016) <doi:10.1037/met0000080>, Deng, L., & Yuan, K. H. (2016) <doi:10.1007/s11336-015-9491-8>, and Jiang, G., Mai, Y., & Yuan, K. H. (2017) <doi:10.3389/fpsyg.2017.01823>.
Programmatic interface to the European Centre for Medium-Range Weather Forecasts dataset web services (ECMWF; <https://www.ecmwf.int/>) and Copernicus's Data Stores. Allows for easy downloads of weather forecasts and climate reanalysis data in R. Data stores covered include the Climate Data Store (CDS; <https://cds.climate.copernicus.eu>), Atmosphere Data Store (ADS; <https://ads.atmosphere.copernicus.eu>) and Early Warning Data Store (CEMS; <https://ewds.climate.copernicus.eu>).
This package provides tools for simulating mathematical models of infectious disease dynamics. Epidemic model classes include deterministic compartmental models, stochastic individual-contact models, and stochastic network models. Network models use the robust statistical methods of exponential-family random graph models (ERGMs) from the Statnet suite of software packages in R. Standard templates for epidemic modeling include SI, SIR, and SIS disease types. EpiModel features an API for extending these templates to address novel scientific research aims. Full methods for EpiModel are detailed in Jenness et al. (2018, <doi:10.18637/jss.v084.i08>).
This package provides a unified interface for connecting to databases ('SQLite', MySQL', PostgreSQL'). Just provide the database name and the package will ask you questions to help you configure the connection and setup your credentials. Once database configuration and connection has been set up once, you won't have to do it ever again.
Predicts enrollment and events at the design or analysis stage using specified enrollment and time-to-event models through simulations.
This package provides a system to facilitate designing comparative (and non-comparative) experiments using the grammar of experimental designs <https://emitanaka.org/edibble-book/>. An experimental design is treated as an intermediate, mutable object that is built progressively by fundamental experimental components like units, treatments, and their relation. The system aids in experimental planning, management and workflow.
Pupillometry offers a non-invasive window into the mind and has been used extensively as a psychophysiological readout of arousal signals linked with cognitive processes like attention, stress, and emotional states [Clewett et al. (2020) <doi:10.1038/s41467-020-17851-9>; Kret & Sjak-Shie (2018) <doi:10.3758/s13428-018-1075-y>; Strauch (2024) <doi:10.1016/j.tins.2024.06.002>]. Yet, despite decades of pupillometry research, many established packages and workflows to date lack design patterns based on Findability, Accessibility, Interoperability, and Reusability (FAIR) principles [see Wilkinson et al. (2016) <doi:10.1038/sdata.2016.18>]. eyeris provides a modular, performant, and extensible preprocessing framework for pupillometry data with BIDS-like organization and interactive output reports [Esteban et al. (2019) <doi:10.1038/s41592-018-0235-4>; Gorgolewski et al. (2016) <doi:10.1038/sdata.2016.44>]. Development was supported, in part, by the Stanford Wu Tsai Human Performance Alliance, Stanford Ric Weiland Graduate Fellowship, Stanford Center for Mind, Brain, Computation and Technology, NIH National Institute on Aging Grants (R01-AG065255, R01-AG079345), NSF GRFP (DGE-2146755), McKnight Brain Research Foundation Clinical Translational Research Scholarship in Cognitive Aging and Age-Related Memory Loss, American Brain Foundation, and the American Academy of Neurology.
Simulate ecological niche models using Mahalanobis distance, transform distances to suitability with 1 - empirical cumulative distribution function and 1 - chi-squared, and generate comparison figures.
Automation of the item selection processes for Rasch scales by means of exhaustive search for suitable Rasch models (dichotomous, partial credit, rating-scale) in a list of item-combinations. The item-combinations to test can be either all possible combinations or item-combinations can be defined by several rules (forced inclusion of specific items, exclusion of combinations, minimum/maximum items of a subset of items). Tests for model fit and item fit include ordering of the thresholds, item fit-indices, likelihood ratio test, Martin-Löf test, Wald-like test, person-item distribution, person separation index, principal components of Rasch residuals, empirical representation of all raw scores or Rasch trees for detecting differential item functioning. The tests, their ordering and their parameters can be defined by the user. For parameter estimation and model tests, functions of the packages eRm', psychotools or pairwise can be used.
This package provides methods for estimating parameter-dependent network centrality measures with linear-in-means models. Both non linear least squares and maximum likelihood estimators are implemented. The methods allow for both link and node heterogeneity in network effects, endogenous network formation and the presence of unconnected nodes. The routines also compare the explanatory power of parameter-dependent network centrality measures with those of standard measures of network centrality. Benefits and features of the econet package are illustrated using data from Battaglini and Patacchini (2018) and Battaglini, Patacchini, and Leone Sciabolazza (2020). For additional details, see the vignette <doi:10.18637/jss.v102.i08>.
Supports designing efficient discrete choice experiments (DCEs). Experimental designs can be formed on the basis of orthogonal arrays or search methods for optimal designs (Federov or mixed integer programs). Various methods for converting these experimental designs into a discrete choice experiment. Many efficiency measures! Draws from literature of Kuhfeld (2010) and Street et. al (2005) <doi:10.1016/j.ijresmar.2005.09.003>.
This package contains data about emojis with relevant metadata, and functions to work with emojis when they are in strings.
Two methods for performing equivalence test for the means of two (test and reference) normal distributions are implemented. The null hypothesis of the equivalence test is that the absolute difference between the two means are greater than or equal to the equivalence margin and the alternative is that the absolute difference is less than the margin. Given that the margin is often difficult to obtain a priori, it is assumed to be a constant multiple of the standard deviation of the reference distribution. The first method assumes a fixed margin which is a constant multiple of the estimated standard deviation of the reference data and whose variability is ignored. The second method takes into account the margin variability. In addition, some tools to summarize and illustrate the data and test results are included to facilitate the evaluation of the data and interpretation of the results.
This framework enables forecasting and extrapolating measures of conditional risk (e.g. of extreme or unprecedented events), including quantiles and exceedance probabilities, using extreme value statistics and flexible neural network architectures. It allows for capturing complex multivariate dependencies, including dependencies between observations, such as sequential dependence (time-series). The methodology was introduced in Pasche and Engelke (2024) <doi:10.1214/24-AOAS1907> (also available in preprint: Pasche and Engelke (2022) <doi:10.48550/arXiv.2208.07590>).
An algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions.
Test hypotheses and construct confidence intervals for AUC (area under Receiver Operating Characteristic curve) and pAUC (partial area under ROC curve), from the given two samples of test data with disease/healthy subjects. The method used is based on TWO SAMPLE empirical likelihood and PROFILE empirical likelihood, as described in <https://www.ms.uky.edu/~mai/research/eAUC1.pdf>.
This package provides set of functions aimed at epidemiologists. The package includes commands for measures of association and impact for case control studies and cohort studies. It may be particularly useful for outbreak investigations including univariable analysis and stratified analysis. The functions for cohort studies include the CS(), CSTable() and CSInter() commands. The functions for case control studies include the CC(), CCTable() and CCInter() commands. References - Cornfield, J. 1956. A statistical problem arising from retrospective studies. In Vol. 4 of Proceedings of the Third Berkeley Symposium, ed. J. Neyman, 135-148. Berkeley, CA - University of California Press. Woolf, B. 1955. On estimating the relation between blood group disease. Annals of Human Genetics 19 251-253. Reprinted in Evolution of Epidemiologic Ideas Annotated Readings on Concepts and Methods, ed. S. Greenland, pp. 108-110. Newton Lower Falls, MA Epidemiology Resources. Gilles Desve & Peter Makary, 2007. CSTABLE Stata module to calculate summary table for cohort study Statistical Software Components S456879, Boston College Department of Economics. Gilles Desve & Peter Makary, 2007. CCTABLE Stata module to calculate summary table for case-control study Statistical Software Components S456878, Boston College Department of Economics.
Take the examples written in your documentation of functions and use them to create shells (skeletons which must be manually completed by the user) of test files to be tested with the testthat package. Sort of like python doctests for R.
Fit Bayesian (hierarchical) cognitive models using a linear modeling language interface using particle Metropolis Markov chain Monte Carlo sampling with Gibbs steps. The diffusion decision model (DDM), linear ballistic accumulator model (LBA), racing diffusion model (RDM), and the lognormal race model (LNR) are supported. Additionally, users can specify their own likelihood function and/or choose for non-hierarchical estimation, as well as for a diagonal, blocked or full multivariate normal group-level distribution to test individual differences. Prior specification is facilitated through methods that visualize the (implied) prior. A wide range of plotting functions assist in assessing model convergence and posterior inference. Models can be easily evaluated using functions that plot posterior predictions or using relative model comparison metrics such as information criteria or Bayes factors. References: Stevenson et al. (2024) <doi:10.31234/osf.io/2e4dq>.
Estimates extinction risk from population time series under a drifted Wiener process using the w-z method for accurate confidence intervals.
This package provides a meta-package that installs and loads a set of packages from easystats ecosystem in a single step. This collection of packages provide a unifying and consistent framework for statistical modeling, visualization, and reporting. Additionally, it provides articles targeted at instructors for teaching easystats', and a dashboard targeted at new R users for easily conducting statistical analysis by accessing summary results, model fit indices, and visualizations with minimal programming.
Easily load and install multiple packages from different sources, including CRAN and GitHub. The libraries function allows you to load or attach multiple packages in the same function call. The packages function will load one or more packages, and install any packages that are not installed on your system (after prompting you). Also included is a from_import function that allows you to import specific functions from a package into the global environment.
Construct the admissible exact intervals for the binomial proportion, the Poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided intervals are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) <doi:10.5705/ss.2012.257> and Wang (2015) <doi:10.1111/biom.12360>.
The R4EPIs project <https://r4epi.github.io/sitrep/> seeks to provide a set of standardized tools for analysis of outbreak and survey data in humanitarian aid settings. This package currently provides standardized data dictionaries from Medecins Sans Frontieres Operational Centre Amsterdam for outbreak scenarios (Acute Jaundice Syndrome, Cholera, Diphtheria, Measles, Meningitis) and surveys (Retrospective mortality and access to care, Malnutrition, Vaccination coverage and Event Based Surveillance) - as described in the following <https://scienceportal.msf.org/assets/standardised-mortality-surveys?utm_source=chatgpt.com>. In addition, a data generator from these dictionaries is provided. It is also possible to read in any Open Data Kit format data dictionary.