Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Access, modify, aggregate and plot data from the Sapfluxnet project, the first global database of sap flow measurements.
This package provides a set of tools for determining the necessary sample size in order to identify the optimal dynamic treatment regime in a sequential, multiple assignment, randomized trial (SMART). Utilizes multiple comparisons with the best methodology to adjust for multiple comparisons. Designed for an arbitrary SMART design. Please see Artman (2018) <doi:10.1093/biostatistics/kxy064> for more details.
Rapidly build accurate genetic prediction models for genome-wide association or whole-genome sequencing study data by smooth-threshold multivariate genetic prediction (STMGP) method. Variable selection is performed using marginal association test p-values with an optimal p-value cutoff selected by Cp-type criterion. Quantitative and binary traits are modeled respectively via linear and logistic regression models. A function that works through PLINK software (Purcell et al. 2007 <DOI:10.1086/519795>, Chang et al. 2015 <DOI:10.1186/s13742-015-0047-8>) <https://www.cog-genomics.org/plink2> is provided. Covariates can be included in regression model.
Generate common data forms for complex data suitable for conversions and transmission by decomposition as paths or primitives. Paths are sequentially-linked records, primitives are basic atomic elements and both can model many forms and be grouped into hierarchical structures. The universal models SC0 (structural) and SC (labelled, relational) are composed of edges and can represent any hierarchical form. Specialist models PATH', ARC and TRI provide the most common intermediate forms used for converting from one form to another. The methods are inspired by the simplicial complex <https://en.wikipedia.org/wiki/Simplicial_complex> and provide intermediate forms that relate spatial data structures to this mathematical construct.
Calculate the Standardized Precipitation Index (SPI) for monitoring drought, using Artificial Intelligence techniques (SPIGA) and traditional numerical technique Maximum Likelihood (SPIML). For more information see: http://drought.unl.edu/monitoringtools/downloadablespiprogram.aspx.
Scaffold an entire web-based report using template chunks, based on a small chapter overview and a dataset. Highly adaptable with prefixes, suffixes, translations, etc. Also contains tools for password-protecting, e.g. for each organization's report on a website. Developed for the common case of a survey across multiple organizations/sites where each organization wants to obtain results for their organization compared with everyone else. See saros (<https://CRAN.R-project.org/package=saros>) for tools used for authors in the drafted reports.
This package provides methods to calculate sample size for single-arm survival studies using the arcsine transformation, incorporating uniform accrual and exponential survival assumptions. Includes functionality for detailed numerical integration and simulation. This method is based on Nagashima et al. (2021) <doi:10.1002/pst.2090>.
This package provides a comprehensive toolkit for mining, analyzing, and visualizing scientific literature in sport science domains. Provides functions for retrieving abstracts from Scopus', preprocessing text data, performing advanced topic modeling using Latent Dirichlet Allocation ('LDA'), Structural Topic Models ('STM'), and Correlated Topic Models ('CTM'), and creating publication-ready visualizations including keyword co-occurrence networks and topic trends. For methodological details see Blei et al. (2003) <doi:10.1162/jmlr.2003.3.4-5.993> for LDA', Roberts et al. (2014) <doi:10.1111/ajps.12103> for STM', and Blei and Lafferty (2007) <doi:10.1214/07-AOAS114> for CTM'.
This package implements SplitWise', a hybrid regression approach that transforms numeric variables into either single-split (0/1) dummy variables or retains them as continuous predictors. The transformation is followed by stepwise selection to identify the most relevant variables. The default iterative mode adaptively explores partial synergies among variables to enhance model performance, while an alternative univariate mode applies simpler transformations independently to each predictor. For details, see Kurbucz et al. (2025) <doi:10.48550/arXiv.2505.15423>.
This package provides functions to take samples of data, sample size estimation and getting useful estimators such as total, mean, proportion about its population using simple random, stratified, systematic and cluster sampling.
This package provides an R interface for SSW (Striped Smith-Waterman) via its Python binding ssw-py'. SSW is a fast C and C++ implementation of the Smith-Waterman algorithm for pairwise sequence alignment using Single-Instruction-Multiple-Data (SIMD) instructions. SSW enhances the standard algorithm by efficiently returning alignment information and suboptimal alignment scores. The core SSW library offers performance improvements for various bioinformatics tasks, including protein database searches, short-read alignments, primary and split-read mapping, structural variant detection, and read-overlap graph generation. These features make SSW particularly useful for genomic applications. Zhao et al. (2013) <doi:10.1371/journal.pone.0082138> developed the original C and C++ implementation.
This package provides an easy framework for Monte Carlo simulation in structural equation modeling, which can be used for various purposes, such as such as model fit evaluation, power analysis, or missing data handling and planning.
This package provides basic functions that support an implementation of multi-profile case (Case 3) best-worst scaling (BWS). Case 3 BWS is a question-based survey method to elicit people's preferences for attribute levels. Case 3 BWS constructs various combinations of attribute levels (profiles) and then asks respondents to select the best and worst profiles in each choice set. A main function creates a dataset for the analysis from the choice sets and the responses to the questions. For details on Case 3 BWS, refer to Louviere et al. (2015) <doi:10.1017/CBO9781107337855>.
Implementation of popular mortality models using the rstan package, which provides the R interface to the Stan C++ library for Bayesian estimation. The package supports well-known models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.1080/01621459.1992.10475265> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. By a simple call, the user inputs deaths and exposures and the package outputs the MCMC simulations for each parameter, the log likelihoods and predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave future-out validation.
Implementation of a shiny app to easily compare supervised machine learning model performances. You provide the data and configure each model parameter directly on the shiny app. Different supervised learning algorithms can be tested either on Spark or H2O frameworks to suit your regression and classification tasks. Implementation of available machine learning models on R has been done by Lantz (2013, ISBN:9781782162148).
Vignettes for the survival package. Split from the survival package since the vignettes were getting large. Also, since survival is a recommended package it cannot make use of other packages outside of base+recommended (e.g. rmarkdown').
Programs to find the sample size or power of studies using the Sequential Parallel Comparison Design (SPCD) and programs to analyze such studies. This is a clinical trial design where patients initially on placebo who did not respond are re-randomized between placebo and active drug in a second phase and the results of the two phases are pooled. The method of analyzing binary data with this design is described in Fava,Evins, Dorer and Schoenfeld(2003) <doi:10.1159/000069738>, and the method of analyzing continuous data is described in Chen, Yang, Hung and Wang (2011) <doi:10.1016/j.cct.2011.04.006>.
This package provides a collection of methods for the Bayesian estimation of Spatial Probit, Spatial Ordered Probit and Spatial Tobit Models. Original implementations from the works of LeSage and Pace (2009, ISBN: 1420064258) were ported and adjusted for R, as described in Wilhelm and de Matos (2013) <doi:10.32614/RJ-2013-013>.
Implementation of evolutionary fuzzy systems for the data mining task called "subgroup discovery". In particular, the algorithms presented in this package are: M. J. del Jesus, P. Gonzalez, F. Herrera, M. Mesonero (2007) <doi:10.1109/TFUZZ.2006.890662> M. J. del Jesus, P. Gonzalez, F. Herrera (2007) <doi:10.1109/MCDM.2007.369416> C. J. Carmona, P. Gonzalez, M. J. del Jesus, F. Herrera (2010) <doi:10.1109/TFUZZ.2010.2060200> C. J. Carmona, V. Ruiz-Rodado, M. J. del Jesus, A. Weber, M. Grootveld, P. González, D. Elizondo (2015) <doi:10.1016/j.ins.2014.11.030> It also provide a Shiny App to ease the analysis. The algorithms work with data sets provided in KEEL, ARFF and CSV format and also with data.frame objects.
Interval fusion and selection procedures for regression with functional inputs. Methods include a semiparametric approach based on Sliced Inverse Regression (SIR), as described in <doi:10.1007/s11222-018-9806-6> (standard ridge and sparse SIR are also included in the package) and a random forest based approach, as described in <doi:10.1002/sam.11705>.
Succinctly and correctly format statistical summaries of various models and tests (F-test, Chi-Sq-test, Fisher-test, T-test, and rank-significance). This package also includes empirical tests, such as Monte Carlo and bootstrap distribution estimates.
Computes spatial position models: the potential model as defined by Stewart (1941) <doi:10.1126/science.93.2404.89> and catchment areas as defined by Reilly (1931) or Huff (1964) <doi:10.2307/1249154>.
Setaria viridis (green foxtail) is a common weed. This package contains measurements from individual branches of a wild Setaria viridis plant collected near the author's home. The data is intended for use in data analysis practice.
Estimation of robust estimators for multi-group and spatial data including the casewise robust Spatially Smoothed Minimum Regularized Determinant (ssMRCD) estimator and its usage for local outlier detection as described in Puchhammer and Filzmoser (2023) <doi:10.1080/10618600.2023.2277875> as well as for sparse robust PCA for multi-source data described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2407.16299>. Moreover, a cellwise robust multi-group Gaussian mixture model (MG-GMM) is implemented as described in Puchhammer, Wilms and Filzmoser (2024) <doi:10.48550/arXiv.2504.02547>. Included are also complementary visualization and parameter tuning tools.