Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for analyzing spatial cell-cell interactions based on ligand-receptor pairs, including functions for local, regional, and global analysis using spatial transcriptomics data. Integrates with databases like CellChat <http://www.cellchat.org/>, CellPhoneDB <https://www.cellphonedb.org/>, Cellinker <https://www.rna-society.org/cellinker/index.html>, ICELLNET <https://github.com/soumelis-lab/ICELLNET>, and ConnectomeDB <https://humanconnectome.org/software/connectomedb/> to identify ligand-receptor pairs, visualize interactions through heatmaps, chord diagrams, and infer interactions on different spatial scales.
An implementation of the selectboost algorithm (Bertrand et al. 2020, Bioinformatics', <doi:10.1093/bioinformatics/btaa855>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
This package performs the EM algorithm for regression models using Skew Scale Mixtures of Normal Distributions.
Calculates parameters of the seawater carbonate system and assists the design of ocean acidification perturbation experiments.
This package contains statistical methods to analyze graphs, such as graph parameter estimation, model selection based on the Graph Information Criterion, statistical tests to discriminate two or more populations of graphs, correlation between graphs, and clustering of graphs. References: Takahashi et al. (2012) <doi:10.1371/journal.pone.0049949>, Fujita et al. (2017) <doi:10.3389/fnins.2017.00066>, Fujita et al. (2017) <doi:10.1016/j.csda.2016.11.016>, Fujita et al. (2019) <doi:10.1093/comnet/cnz028>.
Survival analysis with sparse longitudinal covariates under right censoring scheme. Different hazards models are involved. Please cite the manuscripts corresponding to this package: Sun, Z. et al. (2022) <doi:10.1007/s10985-022-09548-6>, Sun, Z. and Cao, H. (2023) <arXiv:2310.15877> and Sun, D. et al. (2023) <arXiv:2308.15549>.
This package provides a suite of functions that allow a full, fast, and efficient Bayesian treatment of the Bradley--Terry model. Prior assumptions about the model parameters can be encoded through a multivariate normal prior distribution. Inference is performed using a latent variable representation of the model.
Machine learning is widely used in information-systems design. Yet, training algorithms on imbalanced datasets may severely affect performance on unseen data. For example, in some cases in healthcare, financial, or internet-security contexts, certain sub-classes are difficult to learn because they are underrepresented in training data. This R package offers a flexible and efficient solution based on a new synthetic average neighborhood sampling algorithm ('SANSA'), which, in contrast to other solutions, introduces a novel â placementâ parameter that can be tuned to adapt to each datasets unique manifestation of the imbalance. More information about the algorithm's parameters can be found at Nasir et al. (2022) <https://murtaza.cc/SANSA/>.
This package provides an interface to search, read, query, and retrieve metadata for datasets hosted on Socrata open data portals. Supports all Socrata data types, including spatial data returned as sf objects.
Alternative to using withCallingHandlers() in the simple case of catch and rethrow. The `%!%` operator evaluates the expression on its left hand side, and if an error occurs, the right hand side is used to construct a new error that embeds the original error.
This package implements spatial and spatiotemporal GLMMs (Generalized Linear Mixed Effect Models) using TMB', fmesher', and the SPDE (Stochastic Partial Differential Equation) Gaussian Markov random field approximation to Gaussian random fields. One common application is for spatially explicit species distribution models (SDMs). See Anderson et al. (2025) <doi:10.18637/jss.v115.i02>.
This package provides tools for researchers to explicitly show that their results comply to rules for statistical disclosure control imposed by research data centers. These tools help in checking descriptive statistics and models and in calculating extreme values that are not individual data. Also included is a simple function to create log files. The methods used here are described in the "Guidelines for the checking of output based on microdata research" by Bond, Brandt, and de Wolf (2015) <https://cros.ec.europa.eu/system/files/2024-02/Output-checking-guidelines.pdf>.
Statistical Methods for Inferring Transmissions of Infectious Diseases from deep sequencing data (SMITID). It allow sequence-space-time host and viral population data storage, indexation and querying.
This package contains methods to generate and evaluate semi-artificial data sets. Based on a given data set different methods learn data properties using machine learning algorithms and generate new data with the same properties. The package currently includes the following data generators: i) a RBF network based generator using rbfDDA() from package RSNNS', ii) a Random Forest based generator for both classification and regression problems iii) a density forest based generator for unsupervised data Data evaluation support tools include: a) single attribute based statistical evaluation: mean, median, standard deviation, skewness, kurtosis, medcouple, L/RMC, KS test, Hellinger distance b) evaluation based on clustering using Adjusted Rand Index (ARI) and FM c) evaluation based on classification performance with various learning models, e.g., random forests.
An implementation of split-population duration regression models. Unlike regular duration models, split-population duration models are mixture models that accommodate the presence of a sub-population that is not at risk for failure, e.g. cancer patients who have been cured by treatment. This package implements Weibull and Loglogistic forms for the duration component, and focuses on data with time-varying covariates. These models were originally formulated in Boag (1949) and Berkson and Gage (1952), and extended in Schmidt and Witte (1989).
This package provides a collection of procedures for analysing, visualising, and managing single-case data. These include regression models (multilevel, multivariate, bayesian), between case standardised mean difference, overlap indices ('PND', PEM', PAND', PET', tau-u', IRD', baseline corrected tau', CDC'), and randomization tests. Data preparation functions support outlier detection, handling missing values, scaling, and custom transformations. An export function helps to generate html, word, and latex tables in a publication friendly style. A shiny app allows to use scan in a graphical user interface. More details can be found in the online book Analyzing single-case data with R and scan', Juergen Wilbert (2025) <https://jazznbass.github.io/scan-Book/>.
Combines information from two independent surveys using a model-assisted projection method. Designed for survey sampling scenarios where a large sample collects only auxiliary information (Survey 1) and a smaller sample provides data on both variables of interest and auxiliary variables (Survey 2). Implements a working model to generate synthetic values of the variable of interest by fitting the model to Survey 2 data and predicting values for Survey 1 based on its auxiliary variables (Kim & Rao, 2012) <doi:10.1093/biomet/asr063>.
Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition". This package provides another option of direct estimation using weight. This package also features alpha and beta parameter estimation on calculating process of small area. Those methods are Newton-Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.
Median-of-means is a generic yet powerful framework for scalable and robust estimation. A framework for Bayesian analysis is called M-posterior, which estimates a median of subset posterior measures. For general exposition to the topic, see the paper by Minsker (2015) <doi:10.3150/14-BEJ645>.
Tool for statistical simulations that have two components. One component generates the data and the other one analyzes the data. The main aims of the package are the reduction of the administrative source code (mainly loops and management code for the results) and a simple applicability of the package that allows the user to quickly learn how to work with it. Parallel computing is also supported. Finally, convenient functions are provided to summarize the simulation results.
This package provides a collection of various oversampling techniques developed from SMOTE is provided. SMOTE is a oversampling technique which synthesizes a new minority instance between a pair of one minority instance and one of its K nearest neighbor. Other techniques adopt this concept with other criteria in order to generate balanced dataset for class imbalance problem.
This package implements dictionaries that can be used in the SemNetCleaner package. Also includes several functions aimed at facilitating the text cleaning analysis in the SemNetCleaner package. This package is designed to integrate and update word lists and dictionaries based on each user's individual needs by allowing users to store and save their own dictionaries. Dictionaries can be added to the SemNetDictionaries package by submitting user-defined dictionaries to <https://github.com/AlexChristensen/SemNetDictionaries>.
It is a toolbox for Sequential Probability Ratio Tests (SPRT), Wald (1945) <doi:10.2134/agronj1947.00021962003900070011x>. SPRTs are applied to the data during the sampling process, ideally after each observation. At any stage, the test will return a decision to either continue sampling or terminate and accept one of the specified hypotheses. The seq_ttest() function performs one-sample, two-sample, and paired t-tests for testing one- and two-sided hypotheses (Schnuerch & Erdfelder (2019) <doi:10.1037/met0000234>). The seq_anova() function allows to perform a sequential one-way fixed effects ANOVA (Steinhilber et al. (2023) <doi:10.31234/osf.io/m64ne>). Learn more about the package by using vignettes "browseVignettes(package = "sprtt")" or go to the website <https://meikesteinhilber.github.io/sprtt/>.
Allows users to list data structures using path-based navigation. Provides intuitive methods for storing, accessing, and manipulating nested data through simple path strings. Key features include strict mode validation, path existence checking, recursive operations, and automatic parent-level creation. Designed for use cases requiring organized storage of complex nested data while maintaining simple access patterns. Particularly useful for configuration management, nested settings, and any application where data naturally forms a tree-like structure.