Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Implement a multivariate analysis of the impact of items to identify a bias in the questionnaire validation of Likert-type scale variables. The items requires considering a null value (category doesn't have tendency). Offering frequency, importance and impact of the items.
Facilitates spatial and general latent Gaussian modeling using integrated nested Laplace approximation via the INLA package (<https://www.r-inla.org>). Additionally, extends the GAM-like model class to more general nonlinear predictor expressions, and implements a log Gaussian Cox process likelihood for modeling univariate and spatial point processes based on ecological survey data. Model components are specified with general inputs and mapping methods to the latent variables, and the predictors are specified via general R expressions, with separate expressions for each observation likelihood model in multi-likelihood models. A prediction method based on fast Monte Carlo sampling allows posterior prediction of general expressions of the latent variables. Ecology-focused introduction in Bachl, Lindgren, Borchers, and Illian (2019) <doi:10.1111/2041-210X.13168>.
Prepare objects to implement models over spatial and spacetime domains with the INLA package (<https://www.r-inla.org>). These objects contain data to for the cgeneric interface in INLA', enabling fast parallel computations. We implemented the spatial barrier model, see Bakka et. al. (2019) <doi:10.1016/j.spasta.2019.01.002>, and some of the spatio-temporal models proposed in Lindgren et. al. (2024) <https://raco.cat/index.php/SORT/article/view/428665>. Details are provided in the available vignettes and from the URL bellow.
This package provides tools for passing messages between R processes. Shiny examples are provided showing how to perform useful tasks such as: updating reactive values from within a future, progress bars for long running async tasks, and interrupting async tasks based on user input.
Quick indexation of any type of vector or of any combination of those. Indexation turns a vector into an integer vector going from 1 to the number of unique elements. Indexes are important building blocks for many algorithms. The method is described at <https://github.com/lrberge/indexthis/>.
Currently used CI method has its limitation when the test statistics are asymmetrical (chi-square test, F-test) or the model functions are non-linear. It can be overcome by using the likelihood functions for the interval estimation. inteli package now supports interval estimation for the mean, variance, variance ratio, binomial distribution, Poisson distribution, odds ratio, risk difference, relative risk and their likelihood function plots. Testing functions are also provided.
This package contains two main functions: one for solving general isotone regression problems using the pool-adjacent-violators algorithm (PAVA); another one provides a framework for active set methods for isotone optimization problems with arbitrary order restrictions. Various types of loss functions are prespecified.
This package provides a pair of functions for getting and setting the IEEE rounding mode for floating point computations.
An implementation of the Canny Edge Detector for detecting edges in images. The package provides an interface to the algorithm available at <https://github.com/Neseb/canny>.
Computes the key metrics for assessing the performance of a liquidity provider (LP) position in a weighted multi-asset Automated Market Maker (AMM) pool. Calculates the nominal and percentage impermanent loss (IL) by comparing the portfolio value inside the pool (based on the weighted geometric mean of price ratios) against the value of simply holding the assets outside the pool (based on the weighted arithmetic mean). The primary function, `impermanent_loss()`, incorporates the effect of earned trading fees to provide the LP's net profit and loss relative to a holding strategy, using a methodology derived from Tiruviluamala, N., Port, A., and Lewis, E. (2022) <doi:10.48550/arXiv.2203.11352>.
Calculation of key bacterial growth curve parameters using fourth degree polynomial functions. Six growth curve parameters are provided including peak growth rate, doubling time, lag time, maximum growth, and etc. ipolygrowth takes time series data from individual biological samples (with technical replicates) or multiple samples.
Takes in vivo toxicokinetic concentration-time data and fits parameters of 1-compartment and 2-compartment models for each chemical. These methods are described in detail in "Informatics for Toxicokinetics" (2025).
This package provides access to core inflation functions. Four different core inflation functions are provided. The well known trimmed means, exclusion and double weighing methods, alongside the new Triple Filter method introduced in Ferreira et al. (2016) <https://goo.gl/UYLhcj>.
In view of the analysis of the structural characteristics of the tripartite network has been complete, however, there is still a lack of a unified operation that can quickly obtain the corresponding characteristics of the tripartite network. To solve this insufficiency, ILSM was designed for supporting calculating such metrics of tripartite networks by functions of this R package.
Utilities to work with data from the Internal Displacement Monitoring Centre (IDMC) (<https://www.internal-displacement.org/>), with convenient functions for loading events data from the IDMC API and transforming events data to daily displacement estimates.
Drawing statistical inference on the coefficients of a short- or long-horizon predictive regression with persistent regressors by using the IVX method of Magdalinos and Phillips (2009) <doi:10.1017/S0266466608090154> and Kostakis, Magdalinos and Stamatogiannis (2015) <doi:10.1093/rfs/hhu139>.
This package provides datasets for the book "Introduction to Statistical Data Analysis for the Life Sciences, Second edition" by Ekstrøm and Sørensen (2014).
These are data and functions to support quantitative peace science research. The data are important state-year information on democracy and wealth, which require periodic updates and regular maintenance. The functions permit some exploratory and diagnostic assessment of the kinds of data in demand by the community, but do not impose many dependencies on the user.
This package contains implementations of the integrative Cox model with uncertain event times proposed by Wang, et al. (2020) <doi:10.1214/19-AOAS1287>, the regularized Cox cure rate model with uncertain event status proposed by Wang, et al. (2023) <doi:10.1007/s12561-023-09374-w>, and other survival analysis routines including the Cox cure rate model proposed by Kuk and Chen (1992) <doi:10.1093/biomet/79.3.531> via an EM algorithm proposed by Sy and Taylor (2000) <doi:10.1111/j.0006-341X.2000.00227.x>, the regularized Cox cure rate model with elastic net penalty following Masud et al. (2018) <doi:10.1177/0962280216677748>.
Missing values often occur in financial data due to a variety of reasons (errors in the collection process or in the processing stage, lack of asset liquidity, lack of reporting of funds, etc.). However, most data analysis methods expect complete data and cannot be employed with missing values. One convenient way to deal with this issue without having to redesign the data analysis method is to impute the missing values. This package provides an efficient way to impute the missing values based on modeling the time series with a random walk or an autoregressive (AR) model, convenient to model log-prices and log-volumes in financial data. In the current version, the imputation is univariate-based (so no asset correlation is used). In addition, outliers can be detected and removed. The package is based on the paper: J. Liu, S. Kumar, and D. P. Palomar (2019). Parameter Estimation of Heavy-Tailed AR Model With Missing Data Via Stochastic EM. IEEE Trans. on Signal Processing, vol. 67, no. 8, pp. 2159-2172. <doi:10.1109/TSP.2019.2899816>.
Distributional regression under stochastic order restrictions for numeric and binary response variables and partially ordered covariates. See Henzi, Ziegel, Gneiting (2020) <arXiv:1909.03725>.
This package provides functions to help with analysis of longitudinal data featuring irregular observation times, where the observation times may be associated with the outcome process. There are functions to quantify the degree of irregularity, fit inverse-intensity weighted Generalized Estimating Equations (Lin H, Scharfstein DO, Rosenheck RA (2004) <doi:10.1111/j.1467-9868.2004.b5543.x>), perform multiple outputation (Pullenayegum EM (2016) <doi:10.1002/sim.6829>) and fit semi-parametric joint models (Liang Y (2009) <doi: 10.1111/j.1541-0420.2008.01104.x>).
We consider studies in which information from error-prone diagnostic tests or self-reports are gathered sequentially to determine the occurrence of a silent event. Using a likelihood-based approach incorporating the proportional hazards assumption, we provide functions to estimate the survival distribution and covariate effects. We also provide functions for power and sample size calculations for this setting. Please refer to Xiangdong Gu, Yunsheng Ma, and Raji Balasubramanian (2015) <doi: 10.1214/15-AOAS810>, Xiangdong Gu and Raji Balasubramanian (2016) <doi: 10.1002/sim.6962>, Xiangdong Gu, Mahlet G Tadesse, Andrea S Foulkes, Yunsheng Ma, and Raji Balasubramanian (2020) <doi: 10.1186/s12911-020-01223-w>.
This package provides user-friendly and configurable print debugging via a single function, ic(). Wrap an expression in ic() to print the expression, its value and (where available) its source location. Debugging output can be toggled globally without modifying code.