Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical tools for building random mutagenesis libraries for prokaryotes. The package has functions for handling the occupancy distribution for a multinomial and for estimating the number of essential genes in random transposon mutagenesis libraries.
Data files used as examples and for testing of the software provided in the optimalFlow package.
Open Cancer TherApeutic Discovery (OCTAD) package implies sRGES approach for the drug discovery. The essential idea is to identify drugs that reverse the gene expression signature of a disease by tamping down over-expressed genes and stimulating weakly expressed ones. The following package contains all required precomputed data for whole OCTAD pipeline computation.
The package provide RNA-seq count for 2 strains of mus musclus; Wild type and Ob/Ob. Each strain was divided into two groups, and each group received either chow diet or high fat diet. RNA expression was measured after 20 weeks in 7 tissues.
omicsGMF is a Bioconductor package that uses the sgdGMF-framework of the \codesgdGMF package for highly performant and fast matrix factorization that can be used for dimensionality reduction, visualization and imputation of omics data. It considers data from the general exponential family as input, and therefore suits the use of both RNA-seq (Poisson or Negative Binomial data) and proteomics data (Gaussian data). It does not require prior transformation of counts to the log-scale, because it rather optimizes the deviances from the data family specified. Also, it allows to correct for known sample-level and feature-level covariates, therefore enabling visualization and dimensionality reduction upon batch correction. Last but not least, it deals with missing values, and allows to impute these after matrix factorization, useful for proteomics data. This Bioconductor package allows input of SummarizedExperiment, SingleCellExperiment, and QFeature classes.
Genome wide annotation for Canine, primarily based on mapping using Entrez Gene identifiers.
OSTA.data is a companion package for the "Orchestrating Spatial Transcriptomics Analysis" (OSTA) with Bioconductor online book. Throughout OSTA, we rely on a set of publicly available datasets that cover different sequencing- and imaging-based platforms, such as Visium, Visium HD, Xenium (10x Genomics) and CosMx (NanoString). In addition, we rely on scRNA-seq (Chromium) data for tasks, e.g., spot deconvolution and label transfer (i.e., supervised clustering). These data been deposited in an Open Storage Framework (OSF) repository, and can be queried and downloaded using functions from the osfr package. For convenience, we have implemented OSTA.data to query and retrieve data from our OSF node, and cache retrieved Zip archives using BiocFileCache'.
The R implementation of mCOPA package published by Wang et al. (2012). Oppar provides methods for Cancer Outlier profile Analysis. Although initially developed to detect outlier genes in cancer studies, methods presented in oppar can be used for outlier profile analysis in general. In addition, tools are provided for gene set enrichment and pathway analysis.
This package provides functions for normalisation of two-color microarrays by optimised local regression and for detection of artefacts in microarray data.
An implementation of methods for designing, evaluating, and comparing primer sets for multiplex PCR. Primers are designed by solving a set cover problem such that the number of covered template sequences is maximized with the smallest possible set of primers. To guarantee that high-quality primers are generated, only primers fulfilling constraints on their physicochemical properties are selected. A Shiny app providing a user interface for the functionalities of this package is provided by the openPrimeRui package.
Genome wide annotation for Myxococcus xanthus DK 1622, primarily based on mapping using Gene identifiers.
Genome wide annotation for Pig, primarily based on mapping using Entrez Gene identifiers.
The software uses the copy number segments from a text file and identifies all chromosome arms that are globally altered and computes various genome-wide scores. The following HRD scores (characteristic of BRCA-mutated cancers) are included: LST, HR-LOH, nLST and gLOH. the package is tailored for the ThermoFisher Oncoscan assay analyzed with their Chromosome Alteration Suite (ChAS) but can be adapted to any input.
`orthosData` is the companion ExperimentData package to the `orthos` R package for mechanistic studies using differential gene expression experiments. It provides functions for retrieval from ExperimentHub and local caching of the models and datasets used internally in orthos.
This package provides a sizable genomics study such as microarray often involves the use of multiple batches (groups) of experiment due to practical complication. To minimize batch effects, a careful experiment design should ensure the even distribution of biological groups and confounding factors across batches. OSAT (Optimal Sample Assignment Tool) is developed to facilitate the allocation of collected samples to different batches. With minimum steps, it produces setup that optimizes the even distribution of samples in groups of biological interest into different batches, reducing the confounding or correlation between batches and the biological variables of interest. It can also optimize the even distribution of confounding factors across batches. Our tool can handle challenging instances where incomplete and unbalanced sample collections are involved as well as ideal balanced RCBD. OSAT provides a number of predefined layout for some of the most commonly used genomics platform. Related paper can be find at http://www.biomedcentral.com/1471-2164/13/689 .
FHCRC Nelson Lab OperonHumanV3 Annotation Data (OperonHumanV3) assembled using data from public repositories.
This package contains a collection of functions (written as shiny modules) for the visualisation and the statistical analysis of omics data. These plots can be displayed individually or embedded in a global Shiny module. Additionaly, it is possible to integrate third party modules to the main interface of the package omXplore.
This package manages rda files of multiple ontologies that are used in the ontoProc package. These ontologies were originally downloaded as owl or obo files and converted into Rda files. The files were downloaded at various times but most of them were downloaded on August 08 2022.
Package contains several methods for statistical analysis of genotype to phenotype association in high-throughput screening pipelines.
Genome wide annotation for Arabidopsis, primarily based on mapping using TAIR identifiers.
Omixer - an Bioconductor package for multivariate and reproducible sample randomization, which ensures optimal sample distribution across batches with well-documented methods. It outputs lab-friendly sample layouts, reducing the risk of sample mixups when manually pipetting randomized samples.
Genome wide annotation for Malaria, primarily based on mapping using Entrez Gene identifiers.
This package translates microarray expression data into metadata of reduced dimension. It provides various sample-centered and group-centered visualizations, sample similarity analyses and functional enrichment analyses. The underlying SOM algorithm combines feature clustering, multidimensional scaling and dimension reduction, along with strong visualization capabilities. It enables extraction and description of functional expression modules inherent in the data.
This packages provides C++ header files for developers wishing to create R packages that processes BAM files. ompBAM automates file access, memory management, and handling of multiple threads behind the scenes', so developers can focus on creating domain-specific functionality. The included vignette contains detailed documentation of this API, including quick-start instructions to create a new ompBAM-based package, and step-by-step explanation of the functionality behind the example packaged included within ompBAM.