Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This R package allows the determination of some distributions of the voters power when passing laws in weighted voting situations.
An interface to simplify organizing parameters used in a package, using external configuration files. This attempts to provide a cleaner alternative to options().
This package provides functions to estimate the kinship matrix of individuals from a large set of biallelic SNPs, and extract inbreeding coefficients and the generalized FST (Wright's fixation index). Method described in Ochoa and Storey (2021) <doi:10.1371/journal.pgen.1009241>.
Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
This package provides tools to import, clean, and visualize movement data, particularly from motion capture systems such as Optitrack's Motive', the Straw Lab's Flydra', or from other sources. We provide functions to remove artifacts, standardize tunnel position and tunnel axes, select a region of interest, isolate specific trajectories, fill gaps in trajectory data, and calculate 3D and per-axis velocity. For experiments of visual guidance, we also provide functions that use subject position to estimate perception of visual stimuli.
Package to Percentile estimation of fetal weight for twins by chorionicity (dichorionic-diamniotic or monochorionic-diamniotic).
Propagation of uncertainty using higher-order Taylor expansion and Monte Carlo simulation. Calculations of propagated uncertainties are based on matrix calculus including covariance structure according to Arras 1998 <doi:10.3929/ethz-a-010113668> (first order), Wang & Iyer 2005 <doi:10.1088/0026-1394/42/5/011> (second order) and BIPM Supplement 1 (Monte Carlo) <doi:10.59161/JCGM101-2008>.
Code to identify functional enrichments across diverse taxa in phylogenetic tree, particularly where these taxa differ in abundance across samples in a non-random pattern. The motivation for this approach is to identify microbial functions encoded by diverse taxa that are at higher abundance in certain samples compared to others, which could indicate that such functions are broadly adaptive under certain conditions. See GitHub repository for tutorial and examples: <https://github.com/gavinmdouglas/POMS/wiki>. Citation: Gavin M. Douglas, Molly G. Hayes, Morgan G. I. Langille, Elhanan Borenstein (2022) <doi:10.1093/bioinformatics/btac655>.
This package implements two differentially private algorithms for estimating L2-regularized logistic regression coefficients. A randomized algorithm F is epsilon-differentially private (C. Dwork, Differential Privacy, ICALP 2006 <DOI:10.1007/11681878_14>), if |log(P(F(D) in S)) - log(P(F(D') in S))| <= epsilon for any pair D, D of datasets that differ in exactly one record, any measurable set S, and the randomness is taken over the choices F makes.
Implementation of the automatic shift detection method for Brownian Motion (BM) or Ornsteinâ Uhlenbeck (OU) models of trait evolution on phylogenies. Some tools to handle equivalent shifts configurations are also available. See Bastide et al. (2017) <doi:10.1111/rssb.12206> and Bastide et al. (2018) <doi:10.1093/sysbio/syy005>.
Historic Pell grant data as provided by the US Department of Education. This package contains data about how much pell grant was awarded by which institution in which year. This data comes from the US Department of Education. Raw data can be downloaded from here: <https://www2.ed.gov/finaid/prof/resources/data/pell-institution.html>.
partitionMetric computes a distance between two partitions of a set.
An assortment of functions that could be useful in analyzing data from psychophysical experiments. It includes functions for calculating d from several different experimental designs, links for m-alternative forced-choice (mafc) data to be used with the binomial family in glm (and possibly other contexts) and self-Start functions for estimating gamma values for CRT screen calibrations.
Generalized Least Squares (GLS) estimation of Seemingly Unrelated Regression (SUR) systems on unbalanced panel in the one/two-way cases also taking into account the possibility of cross equation restrictions. Methodological details can be found in Biørn (2004) <doi:10.1016/j.jeconom.2003.10.023> and Platoni, Sckokai, Moro (2012) <doi:10.1080/07474938.2011.607098>.
This package provides a fast and flexible framework for agglomerative partitioning. partition uses an approach called Direct-Measure-Reduce to create new variables that maintain the user-specified minimum level of information. Each reduced variable is also interpretable: the original variables map to one and only one variable in the reduced data set. partition is flexible, as well: how variables are selected to reduce, how information loss is measured, and the way data is reduced can all be customized. partition is based on the Partition framework discussed in Millstein et al. (2020) <doi:10.1093/bioinformatics/btz661>.
Simulate dose regimens for pharmacokinetic-pharmacodynamic (PK-PD) models described by differential equation (DE) systems. Simulation using ADVAN-style analytical equations is also supported (Abuhelwa et al. (2015) <doi:10.1016/j.vascn.2015.03.004>).
This package provides function declarations and inline function definitions that facilitate cleaning strings in C++ code before passing them to R.
This package provides a comprehensive and easy to use R implementation of confirmatory phylogenetic path analysis as described by Von Hardenberg and Gonzalez-Voyer (2012) <doi:10.1111/j.1558-5646.2012.01790.x>.
Latent class analysis and latent class regression models for polytomous outcome variables. Also known as latent structure analysis.
An implementation of the parameter cascade method in Ramsay, J. O., Hooker,G., Campbell, D., and Cao, J. (2007) for estimating ordinary differential equation models with missing or complete observations. It combines smoothing method and profile estimation to estimate any non-linear dynamic system. The package also offers variance estimates for parameters of interest based on either bootstrap or Delta method.
This package provides functions to calculate power and sample size for testing main effect or interaction effect in the survival analysis of epidemiological studies (non-randomized studies), taking into account the correlation between the covariate of the interest and other covariates. Some calculations also take into account the competing risks and stratified analysis. This package also includes a set of functions to calculate power and sample size for testing main effect in the survival analysis of randomized clinical trials and conditional logistic regression for nested case-control study.
Estimating Non-Simplified Vine Copulas Using Penalized Splines.
This package provides a novel tool for generating a piecewise constant estimation list of increasingly complex predictors based on an intensive and comprehensive search over the entire covariate space.
Compute bending energies, principal warps, partial warp scores, and the non-affine component of shape variation for 2D landmark configurations, as well as Mardia-Dryden distributions and self-similar distributions of landmarks, as described in Mitteroecker et al. (2020) <doi:10.1093/sysbio/syaa007>. Working examples to decompose shape variation into small-scale and large-scale components, and to decompose the total shape variation into outline and residual shape components are provided. Two landmark datasets are provided, that quantify skull morphology in humans and papionin primates, respectively from Mitteroecker et al. (2020) <doi:10.5061/dryad.j6q573n8s> and Grunstra et al. (2020) <doi:10.5061/dryad.zkh189373>.