Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.
Policy evaluation using generalized Qini curves: Evaluate data-driven treatment targeting rules for one or more treatment arms over different budget constraints in experimental or observational settings under unconfoundedness.
Statistical inference for quadratic functional of the moderate-dimensional linear model in Guo and Cheng (2021) <DOI:10.1080/01621459.2021.1893177>.
Magic functions to obtain results from for loops.
Asymptotic efficient closed-form estimators (MLEces) are provided in this package for three multivariate distributions(gamma, Weibull and Dirichlet) whose maximum likelihood estimators (MLEs) are not in closed forms. Closed-form estimators are strong consistent, and have the similar asymptotic normal distribution like MLEs. But the calculation of MLEces are much faster than the corresponding MLEs. Further details and explanations of MLEces can be found in. Jang, et al. (2023) <doi:10.1111/stan.12299>. Kim, et al. (2023) <doi:10.1080/03610926.2023.2179880>.
Conveniently log everything you type into the R console. Logs are are stored as tidy data frames which can then be analyzed using tidyverse style tools.
It offers random-forest-based functions to impute clustered incomplete data. The package is tailored for but not limited to imputing multitissue expression data, in which a gene's expression is measured on the collected tissues of an individual but missing on the uncollected tissues.
An object that supports automatic differentiation of matrix- and multidimensional-valued functions with respect to multidimensional independent variables. Automatic differentiation is via forward accumulation'.
Generates mid upper arm circumference (MUAC) and body mass index (BMI) for age z-scores and percentiles based on LMS method for children and adolescents up to 19 years that can be used to assess nutritional and health status and define risk of adverse health events.
This package provides a variety of functions that make it easy to plot standard choropleth maps as well as choropleth alternatives in ggplot2'.
Many tools for making, modifying, marking, measuring, and motifs and memberships of many different types of networks. All functions operate with matrices, edge lists, and igraph', network', and tidygraph objects, on directed, multiplex, multimodal, signed, and other networks. The package includes functions for importing and exporting, creating and generating networks, modifying networks and node and tie attributes, and describing networks with sensible defaults.
Utility functions for working with environmental time series data from known locations. The compact data model is structured as a list with two dataframes. A meta dataframe contains spatial and measuring device metadata associated with deployments at known locations. A data dataframe contains a datetime column followed by columns of measurements associated with each "device-deployment". Ephemerides calculations are based on code originally found in NOAA's "Solar Calculator" <https://gml.noaa.gov/grad/solcalc/>.
The Molecular Signatures Database ('MSigDB') is one of the most widely used and comprehensive databases of gene sets for performing gene set enrichment analysis <doi:10.1016/j.cels.2015.12.004>. The msig package provides you with powerful, easy-to-use and flexible query functions for the MsigDB database. There are 2 query modes in the msig package: online query and local query. Both queries contain 2 steps: gene set name and gene. The online search is divided into 2 modes: registered search and non-registered browse. For registered search, email that you registered should be provided. Local queries can be made from local database, which can be updated by msig_update() function.
Facilitates tidy calculation of popular quantitative marketing metrics. It also includes functions for doing analysis that will help marketers and data analysts better understand the drivers and/or trends of these metrics. These metrics include Customer Experience Index <https://go.forrester.com/analytics/cx-index/> and Net Promoter Score <https://www.netpromoter.com/know/>.
The Washington Metropolitan Area Transit Authority is a government agency operating light rail and passenger buses in the Washington D.C. area. With a free developer account, access their Metro Transparent Data Sets API <https://developer.wmata.com/> to return data frames of transit data for easy analysis.
The provided package implements multiple contrast tests for functional data (Munko et al., 2023, <arXiv:2306.15259>). These procedures enable us to evaluate the overall hypothesis regarding equality, as well as specific hypotheses defined by contrasts. In particular, we can perform post hoc tests to examine particular comparisons of interest. Different experimental designs are supported, e.g., one-way and multi-way analysis of variance for functional data.
Package for fast computation of the maximum kernel likelihood estimator (mkle).
Mask ranges based on expert knowledge or remote sensing layers. These tools can be combined to quantitatively and reproducibly generate a new map or to update an existing map. Methods include expert opinion and data-driven tools to generate thresholds for binary masks.
Multi-step adaptive elastic-net (MSAENet) algorithm for feature selection in high-dimensional regressions proposed in Xiao and Xu (2015) <DOI:10.1080/00949655.2015.1016944>, with support for multi-step adaptive MCP-net (MSAMNet) and multi-step adaptive SCAD-net (MSASNet) methods.
This package provides functions for fitting monotone polynomials to data. Detailed discussion of the methodologies used can be found in Murray, Mueller and Turlach (2013) <doi:10.1007/s00180-012-0390-5> and Murray, Mueller and Turlach (2016) <doi:10.1080/00949655.2016.1139582>.
This package provides a comprehensive collection of linkage methods for agglomerative hierarchical clustering on a matrix of proximity data (distances or similarities), returning a multifurcated dendrogram or multidendrogram. Multidendrograms can group more than two clusters when ties in proximity data occur, and therefore they do not depend on the order of the input data. Descriptive measures to analyze the resulting dendrogram are additionally provided. <doi:10.18637/jss.v114.i02>.
It contains six common multi-category classification accuracy evaluation measures. All of these measures could be found in Li and Ming (2019) <doi:10.1002/sim.8103>. Specifically, Hypervolume Under Manifold (HUM), described in Li and Fine (2008) <doi:10.1093/biostatistics/kxm050>. Correct Classification Percentage (CCP), Integrated Discrimination Improvement (IDI), Net Reclassification Improvement (NRI), R-Squared Value (RSQ), described in Li, Jiang and Fine (2013) <doi:10.1093/biostatistics/kxs047>. Polytomous Discrimination Index (PDI), described in Van Calster et al. (2012) <doi:10.1007/s10654-012-9733-3>. Li et al. (2018) <doi:10.1177/0962280217692830>. We described all these above measures and our mcca package in Li, Gao and D'Agostino (2019) <doi:10.1002/sim.8103>.
This package creates and runs Bayesian mixing models to analyze biological tracer data (i.e. stable isotopes, fatty acids), which estimate the proportions of source (prey) contributions to a mixture (consumer). MixSIAR is not one model, but a framework that allows a user to create a mixing model based on their data structure and research questions, via options for fixed/ random effects, source data types, priors, and error terms. MixSIAR incorporates several years of advances since MixSIR and SIAR'.
Emulate MATLAB code using R'.