_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-saeczi 0.2.0
Propagated dependencies: r-rlang@1.1.6 r-rcppeigen@0.3.4.0.2 r-rcpp@1.1.0 r-purrr@1.2.0 r-progressr@0.18.0 r-lme4@1.1-37 r-future@1.68.0 r-furrr@0.3.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://harvard-ufds.github.io/saeczi/
Licenses: Expat
Synopsis: Small Area Estimation for Continuous Zero Inflated Data
Description:

This package provides functionality to fit a zero-inflated estimator for small area estimation. This estimator is a combines a linear mixed effects regression model and a logistic mixed effects regression model via a two-stage modeling approach. The estimator's mean squared error is estimated via a parametric bootstrap method. Chandra and others (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>) describe the applicability of this estimator to estimation of forest attributes and further assess the estimator's properties.

r-sweepdiscovery 0.1.1
Propagated dependencies: r-randomforest@4.7-1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SweepDiscovery
Licenses: GPL 3
Synopsis: Selective Sweep Discovery Tool
Description:

Selective sweep is a biological phenomenon in which genetic variation between neighboring beneficial mutant alleles is swept away due to the effect of genetic hitchhiking. Detection of selective sweep is not well acquainted as well as it is a laborious job. This package is a user friendly approach for detecting selective sweep in genomic regions. It uses a Random Forest based machine learning approach to predict selective sweep from VCF files as an input. Input of this function, train data and new data, can be computed using the project <https://github.com/AbhikSarkar1999/SweepDiscovery> in GitHub'. This package has been developed by using the concept of Pavlidis and Alachiotis (2017) <doi:10.1186/s40709-017-0064-0>.

r-spower 0.5.1
Propagated dependencies: r-simdesign@2.21 r-polycor@0.8-1 r-plotly@4.11.0 r-parallelly@1.45.1 r-lavaan@0.6-20 r-ggplot2@4.0.1 r-envstats@3.1.0 r-cocor@1.1-4 r-car@3.1-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/philchalmers/Spower
Licenses: GPL 3+
Synopsis: Power Analyses using Monte Carlo Simulations
Description:

This package provides a general purpose simulation-based power analysis API for routine and customized simulation experimental designs. The package focuses exclusively on Monte Carlo simulation experiment variants of (expected) prospective power analyses, criterion analyses, compromise analyses, sensitivity analyses, and a priori/post-hoc analyses. The default simulation experiment functions defined within the package provide stochastic variants of the power analysis subroutines in G*Power 3.1 (Faul, Erdfelder, Buchner, and Lang, 2009) <doi:10.3758/brm.41.4.1149>, along with various other parametric and non-parametric power analysis applications (e.g., mediation analyses) and support for Bayesian power analysis by way of Bayes factors or posterior probability evaluations. Additional functions for building empirical power curves, reanalyzing simulation information, and for increasing the precision of the resulting power estimates are also included, each of which utilize similar API structures. For further details see the associated publication in Chalmers (2025) <doi:10.3758/s13428-025-02787-z>.

r-scstability 1.0.3
Propagated dependencies: r-vegan@2.7-2 r-uwot@0.2.4 r-seurat@5.3.1 r-rtsne@0.17 r-rlang@1.1.6 r-pcapp@2.0-5 r-magrittr@2.0.4 r-ggplot2@4.0.1 r-future-apply@1.20.0 r-future@1.68.0 r-aricode@1.0.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=scStability
Licenses: Expat
Synopsis: Measuring the Stability of Dimension Reduction and Cluster Assignment in scRNA-Seq Experiments
Description:

This package provides functions for evaluating the stability of low-dimensional embeddings and cluster assignments in singleâ cell RNA sequencing (scRNAâ seq) datasets. Starting from a principal component analysis (PCA) object, users can generate multiple replicates of tâ Distributed Stochastic Neighbor Embedding (tâ SNE) or Uniform Manifold Approximation and Projection (UMAP) embeddings. Embedding stability is quantified by computing pairwise Kendallâ s Tau correlations across replicates and summarizing the distribution of correlation coefficients. In addition to dimensionality reduction, scStability assesses clustering consistency using either Louvain or Leiden algorithms and calculating the Normalized Mutual Information (NMI) between all pairs of cluster assignments. For background on UMAP and t-SNE algorithms, see McInnes et al. (2020, <doi:10.21105/joss.00861>) and van der Maaten & Hinton (2008, <https://github.com/lvdmaaten/bhtsne>), respectively.

r-svycdiff 0.2.0
Propagated dependencies: r-survey@4.4-8 r-numderiv@2016.8-1.1 r-mass@7.3-65 r-betareg@3.2-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/salernos/svycdiff
Licenses: GPL 3+
Synopsis: Controlled Difference Estimation for Complex Surveys
Description:

Estimates the population average controlled difference for a given outcome between levels of a binary treatment, exposure, or other group membership variable of interest for clustered, stratified survey samples where sample selection depends on the comparison group. Provides three methods for estimation, namely outcome modeling and two factorizations of inverse probability weighting. Under stronger assumptions, these methods estimate the causal population average treatment effect. Salerno et al., (2024) <doi:10.48550/arXiv.2406.19597>.

r-shorts 3.2.0
Propagated dependencies: r-tidyr@1.3.1 r-purrr@1.2.0 r-minpack-lm@1.2-4 r-lambertw@0.6.9-2 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://mladenjovanovic.github.io/shorts/
Licenses: Expat
Synopsis: Short Sprints
Description:

Create short sprint acceleration-velocity (AVP) and force-velocity (FVP) profiles and predict kinematic and kinetic variables using the timing-gate split times, laser or radar gun data, tether devices data, as well as the data provided by the GPS and LPS monitoring systems. The modeling method utilized in this package is based on the works of Furusawa K, Hill AV, Parkinson JL (1927) <doi: 10.1098/rspb.1927.0035>, Greene PR. (1986) <doi: 10.1016/0025-5564(86)90063-5>, Chelly SM, Denis C. (2001) <doi: 10.1097/00005768-200102000-00024>, Clark KP, Rieger RH, Bruno RF, Stearne DJ. (2017) <doi: 10.1519/JSC.0000000000002081>, Samozino P. (2018) <doi: 10.1007/978-3-319-05633-3_11>, Samozino P. and Peyrot N., et al (2022) <doi: 10.1111/sms.14097>, Clavel, P., et al (2023) <doi: 10.1016/j.jbiomech.2023.111602>, Jovanovic M. (2023) <doi: 10.1080/10255842.2023.2170713>, and Jovanovic M., et al (2024) <doi: 10.3390/s24092894>.

r-semds 0.9-7
Propagated dependencies: r-pracma@2.4.6 r-minpack-lm@1.2-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=semds
Licenses: GPL 2+
Synopsis: Structural Equation Multidimensional Scaling
Description:

Fits a structural equation multidimensional scaling (SEMDS) model for asymmetric and three-way input dissimilarities. It assumes that the dissimilarities are measured with errors. The latent dissimilarities are estimated as factor scores within an SEM framework while the objects are represented in a low-dimensional space as in MDS.

r-ssd4mosaic 1.0.4-2
Propagated dependencies: r-shinyjs@2.1.0 r-shinybusy@0.3.3 r-shiny@1.11.1 r-rmarkdown@2.30 r-rlang@1.1.6 r-rhandsontable@0.3.8 r-jsonlite@2.0.0 r-htmlwidgets@1.6.4 r-htmltools@0.5.8.1 r-golem@0.5.1 r-ggplot2@4.0.1 r-fitdistrplus@1.2-4 r-config@0.3.2 r-actuar@3.3-6
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gitlab.in2p3.fr/mosaic-software/mosaic-ssd
Licenses: Expat
Synopsis: Web Application for the SSD Module of the MOSAIC Platform
Description:

Web application using shiny for the SSD (Species Sensitivity Distribution) module of the MOSAIC (MOdeling and StAtistical tools for ecotoxICology) platform. It estimates the Hazardous Concentration for x% of the species (HCx) from toxicity values that can be censored and provides various plotting options for a better understanding of the results. See our companion paper Kon Kam King et al. (2014) <doi:10.48550/arXiv.1311.5772>.

r-splithalf 0.8.2
Propagated dependencies: r-tidyr@1.3.1 r-robustbase@0.99-6 r-rcpp@1.1.0 r-psych@2.5.6 r-plyr@1.8.9 r-patchwork@1.3.2 r-lme4@1.1-37 r-ggplot2@4.0.1 r-dplyr@1.1.4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/sdparsons/splithalf
Licenses: GPL 3
Synopsis: Calculate Task Split Half Reliability Estimates
Description:

Estimate the internal consistency of your tasks with a permutation based split-half reliability approach. Unofficial release name: "I eat stickers all the time, dude!".

r-shattering 1.0.7
Propagated dependencies: r-slam@0.1-55 r-ryacas@1.1.6 r-rmarkdown@2.30 r-pracma@2.4.6 r-pdist@1.2.1 r-nmf@0.28 r-fnn@1.1.4.1 r-e1071@1.7-16
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=shattering
Licenses: GPL 3
Synopsis: Estimate the Shattering Coefficient for a Particular Dataset
Description:

The Statistical Learning Theory (SLT) provides the theoretical background to ensure that a supervised algorithm generalizes the mapping f:X -> Y given f is selected from its search space bias F. This formal result depends on the Shattering coefficient function N(F,2n) to upper bound the empirical risk minimization principle, from which one can estimate the necessary training sample size to ensure the probabilistic learning convergence and, most importantly, the characterization of the capacity of F, including its under and overfitting abilities while addressing specific target problems. In this context, we propose a new approach to estimate the maximal number of hyperplanes required to shatter a given sample, i.e., to separate every pair of points from one another, based on the recent contributions by Har-Peled and Jones in the dataset partitioning scenario, and use such foundation to analytically compute the Shattering coefficient function for both binary and multi-class problems. As main contributions, one can use our approach to study the complexity of the search space bias F, estimate training sample sizes, and parametrize the number of hyperplanes a learning algorithm needs to address some supervised task, what is specially appealing to deep neural networks. Reference: de Mello, R.F. (2019) "On the Shattering Coefficient of Supervised Learning Algorithms" <arXiv:1911.05461>; de Mello, R.F., Ponti, M.A. (2018, ISBN: 978-3319949888) "Machine Learning: A Practical Approach on the Statistical Learning Theory".

r-sbd 0.1.0
Propagated dependencies: r-mass@7.3-65 r-dplyr@1.1.4 r-bbmle@1.0.25.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/MarcusRowcliffe/sbd
Licenses: GPL 3
Synopsis: Size Biased Distributions
Description:

Fitting and plotting parametric or non-parametric size-biased non-negative distributions, with optional covariates if parametric. Rowcliffe, M. et al. (2016) <doi:10.1002/rse2.17>.

r-snha 0.1.3
Propagated dependencies: r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/mittelmark/snha
Licenses: Expat
Synopsis: Creating Correlation Networks using St. Nicolas House Analysis
Description:

Create correlation networks using St. Nicolas House Analysis ('SNHA'). The package can be used for visualizing multivariate data similar to Principal Component Analysis or Multidimensional Scaling using a ranking approach. In contrast to MDS and PCA', SNHA uses a network approach to explore interacting variables. For details see Hermanussen et. al. 2021', <doi:10.3390/ijerph18041741>.

r-strider 1.3
Propagated dependencies: r-rcpp@1.1.0 r-bh@1.87.0-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/thk686/strider
Licenses: Expat
Synopsis: Strided Iterator and Range
Description:

The strided iterator adapts multidimensional buffers to work with the C++ standard library and range-based for-loops. Given a pointer or iterator into a multidimensional data buffer, one can generate an iterator range using make_strided to construct strided versions of the standard library's begin and end. For constructing range-based for-loops, a strided_range class is provided. These help authors to avoid integer-based indexing, which in some cases can impede algorithm performance and introduce indexing errors. This library exists primarily to expose the header file to other R projects.

r-sanvi 0.1.1
Propagated dependencies: r-scales@1.4.0 r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-rcolorbrewer@1.1-3 r-matrixstats@1.5.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/fradenti/SANvi
Licenses: Expat
Synopsis: Fitting Shared Atoms Nested Models via Variational Bayes
Description:

An efficient tool for fitting the nested common and shared atoms models using variational Bayes approximate inference for fast computation. Specifically, the package implements the common atoms model (Denti et al., 2023), its finite version (D'Angelo et al., 2023), and a hybrid finite-infinite model. All models use Gaussian mixtures with a normal-inverse-gamma prior distribution on the parameters. Additional functions are provided to help analyze the results of the fitting procedure. References: Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>, Dâ Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>.

r-swag 0.1.0
Propagated dependencies: r-rdpack@2.6.4 r-caret@7.0-1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SMAC-Group/SWAG-R-Package/
Licenses: GPL 2+
Synopsis: Sparse Wrapper Algorithm
Description:

An algorithm that trains a meta-learning procedure that combines screening and wrapper methods to find a set of extremely low-dimensional attribute combinations. This package works on top of the caret package and proceeds in a forward-step manner. More specifically, it builds and tests learners starting from very few attributes until it includes a maximal number of attributes by increasing the number of attributes at each step. Hence, for each fixed number of attributes, the algorithm tests various (randomly selected) learners and picks those with the best performance in terms of training error. Throughout, the algorithm uses the information coming from the best learners at the previous step to build and test learners in the following step. In the end, it outputs a set of strong low-dimensional learners.

r-snakesandladdersanalysis 2.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SnakesAndLaddersAnalysis
Licenses: GPL 2
Synopsis: Play and Analyse the Game of Snakes and Ladders
Description:

Plays the game of Snakes and Ladders and has tools for analyses. The tools included allow you to find the average moves to win, frequency of each square, importance of the snakes and the ladders, the most common square and the plotting of the game played.

r-simriv 1.0.7
Propagated dependencies: r-terra@1.8-86 r-mco@1.17
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://www.r-project.org
Licenses: GPL 2+
Synopsis: Simulating Multistate Movements in River/Heterogeneous Landscapes
Description:

This package provides functions to generate and analyze spatially-explicit individual-based multistate movements in rivers, heterogeneous and homogeneous spaces. This is done by incorporating landscape bias on local behaviour, based on resistance rasters. Although originally conceived and designed to simulate trajectories of species constrained to linear habitats/dendritic ecological networks (e.g. river networks), the simulation algorithm is built to be highly flexible and can be applied to any (aquatic, semi-aquatic or terrestrial) organism, independently on the landscape in which it moves. Thus, the user will be able to use the package to simulate movements either in homogeneous landscapes, heterogeneous landscapes (e.g. semi-aquatic animal moving mainly along rivers but also using the matrix), or even in highly contrasted landscapes (e.g. fish in a river network). The algorithm and its input parameters are the same for all cases, so that results are comparable. Simulated trajectories can then be used as mechanistic null models (Potts & Lewis 2014, <DOI:10.1098/rspb.2014.0231>) to test a variety of Movement Ecology hypotheses (Nathan et al. 2008, <DOI:10.1073/pnas.0800375105>), including landscape effects (e.g. resources, infrastructures) on animal movement and species site fidelity, or for predictive purposes (e.g. road mortality risk, dispersal/connectivity). The package should be relevant to explore a broad spectrum of ecological phenomena, such as those at the interface of animal behaviour, management, landscape and movement ecology, disease and invasive species spread, and population dynamics.

r-swirlify 0.5.3
Propagated dependencies: r-yaml@2.3.10 r-whisker@0.4.1 r-swirl@2.4.5 r-stringr@1.6.0 r-shinyace@0.4.4 r-shiny@1.11.1 r-rmarkdown@2.30 r-readr@2.1.6 r-base64enc@0.1-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://swirlstats.com
Licenses: Expat
Synopsis: Toolbox for Writing 'swirl' Courses
Description:

This package provides a set of tools for writing and sharing interactive courses to be used with swirl.

r-smashr 1.3-12
Propagated dependencies: r-wavethresh@4.7.3 r-rcpp@1.1.0 r-data-table@1.17.8 r-catools@1.18.3 r-ashr@2.2-63
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/stephenslab/smashr
Licenses: GPL 3+
Synopsis: Smoothing by Adaptive Shrinkage
Description:

Fast, wavelet-based Empirical Bayes shrinkage methods for signal denoising, including smoothing Poisson-distributed data and Gaussian-distributed data with possibly heteroskedastic error. The algorithms implement the methods described Z. Xing, P. Carbonetto & M. Stephens (2021) <https://jmlr.org/papers/v22/19-042.html>.

r-sopc 0.1.0
Propagated dependencies: r-magrittr@2.0.4 r-elasticnet@1.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SOPC
Licenses: Expat
Synopsis: The Sparse Online Principal Component Estimation Algorithm
Description:

The sparse online principal component can not only process the online data set, but also obtain a sparse solution of the online data set. The philosophy of the package is described in Guo G. (2022) <doi:10.1007/s00180-022-01270-z>.

r-ssvs 2.1.0
Propagated dependencies: r-rlang@1.1.6 r-magrittr@2.0.4 r-gridextra@2.3 r-ggplot2@4.0.1 r-dplyr@1.1.4 r-checkmate@2.3.3 r-boomspikeslab@1.2.7 r-bayestestr@0.17.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/sabainter/SSVS
Licenses: GPL 3
Synopsis: Functions for Stochastic Search Variable Selection (SSVS)
Description:

This package provides functions for performing stochastic search variable selection (SSVS) for binary and continuous outcomes and visualizing the results. SSVS is a Bayesian variable selection method used to estimate the probability that individual predictors should be included in a regression model. Using MCMC estimation, the method samples thousands of regression models in order to characterize the model uncertainty regarding both the predictor set and the regression parameters. For details see Bainter, McCauley, Wager, and Losin (2020) Improving practices for selecting a subset of important predictors in psychology: An application to predicting pain, Advances in Methods and Practices in Psychological Science 3(1), 66-80 <DOI:10.1177/2515245919885617>.

r-shadowr 0.0.2
Propagated dependencies: r-rselenium@1.7.9
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ricilandolt/shadowr
Licenses: ASL 2.0
Synopsis: Selenium Plugin to Manage Multi Level Shadow Elements on Web Page
Description:

Shadow Document Object Model is a web standard that offers component style and markup encapsulation. It is a critically important piece of the Web Components story as it ensures that a component will work in any environment even if other CSS or JavaScript is at play on the page. Custom HTML tags can't be directly identified with selenium tools, because Selenium doesn't provide any way to deal with shadow elements. Using this plugin you can handle any custom HTML tags.

r-sbicgraph 1.0.0
Propagated dependencies: r-network@1.19.0 r-mass@7.3-65 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SBICgraph
Licenses: GPL 3
Synopsis: Structural Bayesian Information Criterion for Graphical Models
Description:

This is the implementation of the novel structural Bayesian information criterion by Zhou, 2020 (under review). In this method, the prior structure is modeled and incorporated into the Bayesian information criterion framework. Additionally, we also provide the implementation of a two-step algorithm to generate the candidate model pool.

r-shapley 0.5.1
Propagated dependencies: r-pander@0.6.6 r-h2o@3.44.0.3 r-ggplot2@4.0.1 r-curl@7.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/haghish/shapley
Licenses: Expat
Synopsis: Weighted Mean SHAP and CI for Robust Feature Assessment in ML Grid
Description:

This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP), an innovative method for calculating SHAP values for a grid of fine-tuned base-learner machine learning models as well as stacked ensembles, a method not previously available due to the common reliance on single best-performing models. By integrating the weighted mean SHAP values from individual base-learners comprising the ensemble or individual base-learners in a tuning grid search, the package weights SHAP contributions according to each model's performance, assessed by multiple either R squared (for both regression and classification models). alternatively, this software also offers weighting SHAP values based on the area under the precision-recall curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classifiers. It further extends this framework to implement weighted confidence intervals for weighted mean SHAP values, offering a more comprehensive and robust feature importance evaluation over a grid of machine learning models, instead of solely computing SHAP values for the best model. This methodology is particularly beneficial for addressing the severe class imbalance (class rarity) problem by providing a transparent, generalized measure of feature importance that mitigates the risk of reporting SHAP values for an overfitted or biased model and maintains robustness under severe class imbalance, where there is no universal criteria of identifying the absolute best model. Furthermore, the package implements hypothesis testing to ascertain the statistical significance of SHAP values for individual features, as well as comparative significance testing of SHAP contributions between features. Additionally, it tackles a critical gap in feature selection literature by presenting criteria for the automatic feature selection of the most important features across a grid of models or stacked ensembles, eliminating the need for arbitrary determination of the number of top features to be extracted. This utility is invaluable for researchers analyzing feature significance, particularly within severely imbalanced outcomes where conventional methods fall short. Moreover, it is also expected to report democratic feature importance across a grid of models, resulting in a more comprehensive and generalizable feature selection. The package further implements a novel method for visualizing SHAP values both at subject level and feature level as well as a plot for feature selection based on the weighted mean SHAP ratios.

Page: 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844
Total results: 68249