Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a collection of simple parameter estimation and tests for the comparison of multivariate means and variation, to accompany Chapters 4 and 5 of the book Multivariate Statistical Methods. A Primer (5th edition), by Manly BFJ, Navarro Alberto JA & Gerow K (2024) <doi:10.1201/9781003453482>.
Quantifies clustering quality by measuring both cohesion within clusters and separation between clusters. Implements advanced silhouette width computations for diverse clustering structures, including: simplified silhouette (Van der Laan et al., 2003) <doi:10.1080/0094965031000136012>, Probability of Alternative Cluster normalization methods (Raymaekers & Rousseeuw, 2022) <doi:10.1080/10618600.2022.2050249>, fuzzy clustering and silhouette diagnostics using membership probabilities (Campello & Hruschka, 2006; Menardi, 2011; Bhat & Kiruthika, 2024) <doi:10.1016/j.fss.2006.07.006>, <doi:10.1007/s11222-010-9169-0>, <doi:10.1080/23737484.2024.2408534>, and multi-way clustering extensions such as block and tensor clustering (Schepers et al., 2008; Bhat & Kiruthika, 2025) <doi:10.1007/s00357-008-9005-9>, <doi:10.21203/rs.3.rs-6973596/v1>. Provides tools for computation and visualization (Rousseeuw, 1987) <doi:10.1016/0377-0427(87)90125-7> to support robust and reproducible cluster diagnostics across standard, soft, and multi-way clustering settings.
Quantify stratigraphic disorder using the metrics defined by Burgess (2016) <doi:10.2110/jsr.2016.10>. Contains a range of utility tools to construct and manipulate stratigraphic columns.
It is often useful to produce short, quasi-unique identifiers (SQUIDs) without the benefit of a central authority to prevent duplication. Although Universally Unique Identifiers (UUIDs) provide for this, these are also unwieldy; for example, the most used UUID, version 4, is 36 characters long. SQUIDs are short (8 characters) at the expense of having more collisions, which can be mitigated by combining them with human-produced suffixes, yielding relatively brief, half human-readable, almost-unique identifiers (see for example the identifiers used for Decentralized Construct Taxonomies; Peters & Crutzen, 2024 <doi:10.15626/MP.2022.3638>). SQUIDs are the number of centiseconds elapsed since the beginning of 1970 converted to a base 30 system. This package contains functions to produce SQUIDs as well as convert them back into dates and times.
Network meta-analysis for survival outcome data often involves several studies only involve dichotomized outcomes (e.g., the numbers of event and sample sizes of individual arms). To combine these different outcome data, Woods et al. (2010) <doi:10.1186/1471-2288-10-54> proposed a Bayesian approach using complicated hierarchical models. Besides, frequentist approaches have been alternative standard methods for the statistical analyses of network meta-analysis, and the methodology has been well established. We proposed an easy-to-implement method for the network meta-analysis based on the frequentist framework in Noma and Maruo (2025) <doi:10.1101/2025.01.23.25321051>. This package involves some convenient functions to implement the simple synthesis method.
This package provides a group of functions to scrape data from different websites, for academic purposes.
This package provides a bridge is created between existing robust open-source record linkage algorithms and an urgently needed user-friendly platform that removes financial and technical barriers, setting a new standard for data interoperability in public health and bioinformatics. The fastLink algorithms are used for matching. Ted Enamorado et al. (2019) <doi:10.1017/S0003055418000783>.
Perform survival simulation with parametric survival model generated from survreg function in survival package. In each simulation coefficients are resampled from variance-covariance matrix of parameter estimates to capture uncertainty in model parameters. Prediction intervals of Kaplan-Meier estimates and hazard ratio of treatment effect can be further calculated using simulated survival data.
Simulates and plots quantities of interest (relative hazards, first differences, and hazard ratios) for linear coefficients, multiplicative interactions, polynomials, penalised splines, and non-proportional hazards, as well as stratified survival curves from Cox Proportional Hazard models. It also simulates and plots marginal effects for multiplicative interactions. Methods described in Gandrud (2015) <doi:10.18637/jss.v065.i03>.
Implementation of a model-based bootstrap approach for testing whether two formulations are similar. The package provides a function for fitting a pharmacokinetic model to time-concentration data and comparing the results for all five candidate models regarding the Residual Sum of Squares (RSS). The candidate set contains a First order, Hixson-Crowell, Higuchi, Weibull and a logistic model. The assessment of similarity implemented in this package is performed regarding the maximum deviation of the profiles. See Moellenhoff et al. (2018) <doi:10.1002/sim.7689> for details.
This package provides a coordinate descent algorithm for computing the solution paths of the sparse and coupled sparse asymmetric least squares, including the (adaptive) elastic net and Lasso penalized SALES and COSALES regressions.
Density, distribution function, quantile function and random generation for the skewed t distribution of Fernandez and Steel.
An implementation of a computationally efficient method to fit large-scale interaction models based on the reluctant interaction selection principle. The method and its properties are described in greater depth in Yu, G., Bien, J., and Tibshirani, R.J. (2019) "Reluctant interaction modeling", which is available at <arXiv:1907.08414>.
Perform spatial analysis on network. Implement several methods for spatial analysis on network: Network Kernel Density estimation, building of spatial matrices based on network distance ('listw objects from spdep package), K functions estimation for point pattern analysis on network, k nearest neighbours on network, reachable area calculation, and graph generation References: Okabe et al (2019) <doi:10.1080/13658810802475491>; Okabe et al (2012, ISBN:978-0470770818);Baddeley et al (2015, ISBN:9781482210200).
An algorithm that trains a meta-learning procedure that combines screening and wrapper methods to find a set of extremely low-dimensional attribute combinations. This package works on top of the caret package and proceeds in a forward-step manner. More specifically, it builds and tests learners starting from very few attributes until it includes a maximal number of attributes by increasing the number of attributes at each step. Hence, for each fixed number of attributes, the algorithm tests various (randomly selected) learners and picks those with the best performance in terms of training error. Throughout, the algorithm uses the information coming from the best learners at the previous step to build and test learners in the following step. In the end, it outputs a set of strong low-dimensional learners.
This package provides an implementation of simultaneous tolerance bounds (STB), useful for checking whether a numeric vector fits to a hypothetical null-distribution or not. Furthermore, there are functions for computing STB (bands, intervals) for random variates of linear mixed models fitted with package VCA'. All kinds of, possibly transformed (studentized, standardized, Pearson-type transformed) random variates (residuals, random effects), can be assessed employing STB-methodology.
In some situations where researchers would like to demonstrate causal effects, it is hard to obtain a sample size that would allow for a well-powered randomized controlled trial. Single case designs are experimental designs that can be used to demonstrate causal effects with only one participant or with only a few participants. The scdtb package provides a suite of tools for analyzing data from studies that use single case designs. The nap() function can be used to compute the nonoverlap of all pairs as outlined by the What Works Clearinghouse (2022) <https://ies.ed.gov/ncee/wwc/Handbooks>. The package also offers the mixed_model_analysis() and cross_lagged() functions which implement mixed effects models and cross lagged analyses as described in Maric & van der Werff (2020) <doi:10.4324/9780429273872-9>. The randomization_test() function implements randomization tests based on methods presented in Onghena (2020) <doi:10.4324/9780429273872-8>. The scdtb() shiny application can be used to upload single case design data and access various scdtb tools for plotting and analysis.
This package implements the methodological developments found in Hermes (2025) <doi:10.48550/arXiv.2503.02786>, and allows for the statistical modeling of data consisting of multiple users that provide an ordinal rating for one or multiple items.
Includes general data manipulation functions, algorithms for statistical disclosure control (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6> and functions for hierarchical computations by sparse model matrices (Langsrud, 2023) <doi:10.32614/RJ-2023-088>.
This package performs multivariate nonparametric regression/classification by the method of sieves (using orthogonal basis). The method is suitable for moderate high-dimensional features (dimension < 100). The l1-penalized sieve estimator, a nonparametric generalization of Lasso, is adaptive to the feature dimension with provable theoretical guarantees. We also include a nonparametric stochastic gradient descent estimator, Sieve-SGD, for online or large scale batch problems. Details of the methods can be found in: <arXiv:2206.02994> <arXiv:2104.00846><arXiv:2310.12140>.
An implementation of image processing effects that convert a photo into a line drawing image. For details, please refer to Tsuda, H. (2020). sketcher: An R package for converting a photo into a sketch style image. <doi:10.31234/osf.io/svmw5>.
The goal of snpsettest is to provide simple tools that perform set-based association tests (e.g., gene-based association tests) using GWAS (genome-wide association study) summary statistics. A set-based association test in this package is based on the statistical model described in VEGAS (versatile gene-based association study), which combines the effects of a set of SNPs accounting for linkage disequilibrium between markers. This package uses a different approach from the original VEGAS implementation to compute set-level p values more efficiently, as described in <https://github.com/HimesGroup/snpsettest/wiki/Statistical-test-in-snpsettest>.
To determine sample size or power for case-control studies to be analyzed using logistic regression.
Efficiently estimates treatment effects in settings with randomized staggered rollouts, using tools proposed by Roth and Sant'Anna (2023) <doi:10.48550/arXiv.2102.01291>.