Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is a package for computation and visualization of simple, multiple and joint correspondence analysis.
This package includes functions to compute the area under the curve of selected measures: the area under the sensitivity curve (AUSEC), the area under the specificity curve (AUSPC), the area under the accuracy curve (AUACC), and the area under the receiver operating characteristic curve (AUROC). The curves can also be visualized. Support for partial areas is provided.
This package provides themes for use with Shiny. It includes several Bootstrap themes, which are packaged for use with Shiny applications.
This package provides a collection of R-functions implementing adaptive smoothing procedures in 1D, 2D and 3D. This includes the Propagation-Separation approach to adaptive smoothing, the Intersecting Confidence Intervals (ICI), variational approaches, and a non-local means filter.
R/qtl is an extension library for the R statistics system. It is used to analyze experimental crosses for identifying genes contributing to variation in quantitative traits (so-called quantitative trait loci, QTLs).
Using a hidden Markov model, R/qtl estimates genetic maps, to identify genotyping errors, and to perform single-QTL and two-QTL, two-dimensional genome scans.
This package provides statistical models of biased sampling in the form of univariate and multivariate noncentral hypergeometric distributions, including Wallenius' noncentral hypergeometric distribution and Fisher's noncentral hypergeometric distribution (also called extended hypergeometric distribution).
This package implements a successive halving and hyperband optimization algorithm for the mlr3 ecosystem. The implementation in mlr3hyperband features improved scheduling and parallelizes the evaluation of configurations. The package includes tuners for hyperparameter optimization in mlr3tuning and optimizers for black-box optimization in bbotk.
Convert a logical vector or a vector of p-values or a correlation, difference, or distance matrix into a display identifying the pairs for which the differences were not significantly different.
This package provides functions, data sets, examples, demos, and vignettes for the book Christian Kleiber and Achim Zeileis (2008), Applied Econometrics with R, Springer-Verlag, New York. ISBN 978-0-387-77316-2. (See the vignette "AER" for a package overview.)
This package lets you interface to Nocedal et al. L-BFGS-B.3.0 limited memory BFGS minimizer with bounds on parameters. This registers a R compatible C interface to L-BFGS-B.3.0 that uses the same function types and optimization as the optim() function. This package also adds more stopping criteria as well as allowing the adjustment of more tolerances.
This package provides tools to execute arbitrary R or C functions some time after the current time, after the R execution stack has emptied.
This package provides functions for extracting feature contributions from a random forest model from package randomForest. Feature contributions provide detailed information about the relationship between data variables and the predicted value returned by random forest model.
The package includes the necessary functions to construct a self-organizing map of data, to evaluate the statistical significance of the observed data patterns, and to visualize the results.
This package provides Cramer-Von Mises and Anderson-Darling tests of goodness-of-fit for continuous univariate distributions, using efficient algorithms.
This package provides an implementation of scatter plots for plotting. a three dimensional point cloud.
This package creates and manages simple key-value stores. These can use a variety of approaches for storing the data. This package implements the base methods and support for file system, in-memory and DBI-based database stores.
This package calls the Jupyter script nbconvert to create vignettes from notebooks. Those notebooks (.ipynb files) are files containing rich text, code, and its output. Code cells can be edited and evaluated interactively.
Algorithms to find arrangements of non-overlapping circles.
This tool provides a parallel version of the L-BFGS-B method of optim(). The main function of the package is optimParallel(), which has the same usage and output as optim(). Using optimParallel() can significantly reduce the optimization time.
This package provides tools to more conveniently perform tasks associated with add-on packages. pacman conveniently wraps library and package related functions and names them in an intuitive and consistent fashion. It seeks to combine functionality from lower level functions which can speed up workflow.
These utilities facilitate the programmatic manipulations of formulas, expressions, calls, assignments and other R language objects. These objects all share the same structure: a left-hand side, operator and right-hand side. This package provides methods for accessing and modifying this structures as well as extracting and replacing names and symbols from these objects.
Alternating least squares is often used to resolve components contributing to data with a bilinear structure; the basic technique may be extended to alternating constrained least squares. This package provides an implementation of multivariate curve resolution alternating least squares (MCR-ALS).
Commonly applied constraints include unimodality, non-negativity, and normalization of components. Several data matrices may be decomposed simultaneously by assuming that one of the two matrices in the bilinear decomposition is shared between datasets.
This package allows for testing of non-nested models. It includes tests of model distinguishability and of model fit that can be applied to both nested and non-nested models. The package also includes functionality to obtain confidence intervals associated with AIC and BIC.
This package provides an interface to Amazon Web Services customer engagement services, including Simple Email Service, Connect contact center service, and more.