Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This packages contains data to be used with the tofsims package.
TaxSEA is an R package for Taxon Set Enrichment Analysis, which utilises a Kolmogorov-Smirnov test analyses to investigate differential abundance analysis output for whether there are alternations in a-priori defined sets of taxa from five previously published databases (BugSigDB, MiMeDB, GutMGene, mBodyMap and GMRepoV2). TaxSEA takes as input a list of taxonomic identifiers (e.g. species names, NCBI IDs etc.) and a rank (E.g. fold change, correlation coefficient). TaxSEA be applied to any microbiota taxonomic profiling technology (array-based, 16S rRNA gene sequencing, shotgun metagenomics & metatranscriptomics etc.) and enables researchers to rapidly contextualize their findings within the broader literature to accelerate interpretation of results.
Design primers for targeted single-cell RNA-seq used by TAP-seq. Create sequence templates for target gene panels and design gene-specific primers using Primer3. Potential off-targets can be estimated with BLAST. Requires working installations of Primer3 and BLASTn.
RNA abundance and cell size parameters could improve RNA-seq deconvolution algorithms to more accurately estimate cell type proportions given the different cell type transcription activity levels. A Total RNA Expression Gene (TREG) can facilitate estimating total RNA content using single molecule fluorescent in situ hybridization (smFISH). We developed a data-driven approach using a measure of expression invariance to find candidate TREGs in postmortem human brain single nucleus RNA-seq. This R package implements the method for identifying candidate TREGs from snRNA-seq data.
Testing SNPs and SNP interactions with a genotypic TDT. This package furthermore contains functions for computing pairwise values of LD measures and for identifying LD blocks, as well as functions for setting up matched case pseudo-control genotype data for case-parent trios in order to run trio logic regression, for imputing missing genotypes in trios, for simulating case-parent trios with disease risk dependent on SNP interaction, and for power and sample size calculation in trio data.
This experimental data package contains 11 data sets necessary to follow the "TCGA Workflow: Analyze cancer genomics and epigenomics data using Bioconductor packages".
TOP constructs a transferable model across gene expression platforms for prospective experiments. Such a transferable model can be trained to make predictions on independent validation data with an accuracy that is similar to a re-substituted model. The TOP procedure also has the flexibility to be adapted to suit the most common clinical response variables, including linear response, binomial and Cox PH models.
The topdownr package allows automatic and systemic investigation of fragment conditions. It creates Thermo Orbitrap Fusion Lumos method files to test hundreds of fragmentation conditions. Additionally it provides functions to analyse and process the generated MS data and determine the best conditions to maximise overall fragment coverage.
Exposes an annotation databases generated from UCSC by exposing these as TxDb objects.
Access to processed 10x (droplet) and SmartSeq2 (on FACS-sorted cells) single-cell RNA-seq data from the Tabula Muris consortium (http://tabula-muris.ds.czbiohub.org/).
The twoddpcr package takes Droplet Digital PCR (ddPCR) droplet amplitude data from Bio-Rad's QuantaSoft and can classify the droplets. A summary of the positive/negative droplet counts can be generated, which can then be used to estimate the number of molecules using the Poisson distribution. This is the first open source package that facilitates the automatic classification of general two channel ddPCR data. Previous work includes definetherain (Jones et al., 2014) and ddpcRquant (Trypsteen et al., 2015) which both handle one channel ddPCR experiments only. The ddpcr package available on CRAN (Attali et al., 2016) supports automatic gating of a specific class of two channel ddPCR experiments only.
Rank results by confident effect sizes, while maintaining False Discovery Rate and False Coverage-statement Rate control. Topconfects is an alternative presentation of TREAT results with improved usability, eliminating p-values and instead providing confidence bounds. The main application is differential gene expression analysis, providing genes ranked in order of confident log2 fold change, but it can be applied to any collection of effect sizes with associated standard errors.
Supplementary Data package for tandem timer methods paper by Barry et al. (2015) including TimerQuant shiny applications.
transite is a computational method that allows comprehensive analysis of the regulatory role of RNA-binding proteins in various cellular processes by leveraging preexisting gene expression data and current knowledge of binding preferences of RNA-binding proteins.
Given a time series or pseudo-times series of gene expression data, we might wish to know: Do the changes in gene expression in these data exhibit directionality? Are there turning points in this directionality. Do different subsets of the data move in different directions? This package uses spherical geometry to probe these sorts of questions. In particular, if we are looking at (say) the first n dimensions of the PCA of gene expression, directionality can be detected as the clustering of points on the (n-1)-dimensional sphere.
The tuberculosis R/Bioconductor package features tuberculosis gene expression data for machine learning. All human samples from GEO that did not come from cell lines, were not taken postmortem, and did not feature recombination have been included. The package has more than 10,000 samples from both microarray and sequencing studies that have been processed from raw data through a hyper-standardized, reproducible pipeline.
TTMap is a clustering method that groups together samples with the same deviation in comparison to a control group. It is specially useful when the data is small. It is parameter free.
The `TrIdent` R package automates the analysis of transductomics data by detecting, classifying, and characterizing read coverage patterns associated with potential transduction events. Transductomics is a DNA sequencing-based method for the detection and characterization of transduction events in pure cultures and complex communities. Transductomics relies on mapping sequencing reads from a viral-like particle (VLP)-fraction of a sample to contigs assembled from the metagenome (whole-community) of the same sample. Reads from bacterial DNA carried by VLPs will map back to the bacterial contigs of origin creating read coverage patterns indicative of ongoing transduction.
treekoR is a novel framework that aims to utilise the hierarchical nature of single cell cytometry data to find robust and interpretable associations between cell subsets and patient clinical end points. These associations are aimed to recapitulate the nested proportions prevalent in workflows inovlving manual gating, which are often overlooked in workflows using automatic clustering to identify cell populations. We developed treekoR to: Derive a hierarchical tree structure of cell clusters; quantify a cell types as a proportion relative to all cells in a sample (%total), and, as the proportion relative to a parent population (%parent); perform significance testing using the calculated proportions; and provide an interactive html visualisation to help highlight key results.
Single-cell RNA-seq data for on PBMC cells, generated by 10X Genomics.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was Tomato\_probe\_tab.
Single-cell RNA-seq data for 1.3 million brain cells from E18 mice, generated by 10X Genomics.
TADCompare is an R package designed to identify and characterize differential Topologically Associated Domains (TADs) between multiple Hi-C contact matrices. It contains functions for finding differential TADs between two datasets, finding differential TADs over time and identifying consensus TADs across multiple matrices. It takes all of the main types of HiC input and returns simple, comprehensive, easy to analyze results.
Analyze thermal proteome profiling (TPP) experiments with varying temperatures (TR) or compound concentrations (CCR).