Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Statistical models fit to compositional data are often difficult to interpret due to the sum to 1 constraint on data variables. DImodelsVis provides novel visualisations tools to aid with the interpretation of models fit to compositional data. All visualisations in the package are created using the ggplot2 plotting framework and can be extended like every other ggplot object.
Functionality for manipulating values of associative maps. The package is a dependency for mvp-type packages that use the STL map class: it traps plausible idiom that is ill-defined (implementation-specific) and returns an informative error, rather than returning a possibly incorrect result. To cite the package in publications please use Hankin (2022) <doi:10.48550/ARXIV.2210.03856>.
Offers meta programming style tools to generate configurable R functions that produce HTML forms based on table input and SQL meta data. Also generates functions for collecting the parameters of those HTML forms after they are submitted. Useful for quickly generating HTML forms based on existing SQL tables. To use the resultant functions, the output files containing those functions must be read into the R environment (perhaps using base::source()).
Facilitates the analysis of SNP (single nucleotide polymorphism) and silicodart (presence/absence) data. dartR.popgen provides a suit of functions to analyse such data in a population genetics context. It provides several functions to calculate population genetic metrics and to study population structure. Quite a few functions need additional software to be able to run (gl.run.structure(), gl.blast(), gl.LDNe()). You find detailed description in the help pages how to download and link the packages so the function can run the software. dartR.popgen is part of the the dartRverse suit of packages. Gruber et al. (2018) <doi:10.1111/1755-0998.12745>. Mijangos et al. (2022) <doi:10.1111/2041-210X.13918>.
Time series analysis of network connectivity. Detects and visualizes change points between networks. Methods included in the package are discussed in depth in Baek, C., Gates, K. M., Leinwand, B., Pipiras, V. (2021) "Two sample tests for high-dimensional auto-covariances" <doi:10.1016/j.csda.2020.107067> and Baek, C., Gampe, M., Leinwand B., Lindquist K., Hopfinger J. and Gates K. (2023) â Detecting functional connectivity changes in fMRI dataâ <doi:10.1007/s11336-023-09908-7>.
Dose Titration Algorithm Tuning (DTAT) is a methodologic framework allowing dose individualization to be conceived as a continuous learning process that begins in early-phase clinical trials and continues throughout drug development, on into clinical practice. This package includes code that researchers may use to reproduce or extend key results of the DTAT research programme, plus tools for trialists to design and simulate a 3+3/PC dose-finding study. Please see Norris (2017a) <doi:10.12688/f1000research.10624.3> and Norris (2017c) <doi:10.1101/240846>.
Utilities for mixed frequency data. In particular, use to aggregate and normalize tabular mixed frequency data, index dates to end of period, and seasonally adjust tabular data.
Graphical interface for loading datasets in RStudio from all installed (including unloaded) packages, also includes command line interfaces.
Example datasets from the book "An Introduction to Generalised Linear Models" (Year: 2018, ISBN:9781138741515) by Dobson and Barnett.
This package provides read and write access to data and metadata from the DataONE network <https://www.dataone.org> of data repositories. Each DataONE repository implements a consistent repository application programming interface. Users call methods in R to access these remote repository functions, such as methods to query the metadata catalog, get access to metadata for particular data packages, and read the data objects from the data repository. Users can also insert and update data objects on repositories that support these methods.
Identification of causal effects from arbitrary observational and experimental probability distributions via do-calculus and standard probability manipulations using a search-based algorithm by Tikka, Hyttinen and Karvanen (2021) <doi:10.18637/jss.v099.i05>. Allows for the presence of mechanisms related to selection bias (Bareinboim and Tian, 2015) <doi:10.1609/aaai.v29i1.9679>, transportability (Bareinboim and Pearl, 2014) <http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf>, missing data (Mohan, Pearl, and Tian, 2013) <http://ftp.cs.ucla.edu/pub/stat_ser/r410.pdf>) and arbitrary combinations of these. Also supports identification in the presence of context-specific independence (CSI) relations through labeled directed acyclic graphs (LDAG). For details on CSIs see (Corander et al., 2019) <doi:10.1016/j.apal.2019.04.004>.
To create demographic table with simple summary statistics, with optional comparison(s) over one or more groups.
The framework provides functions to generate ODEs of reaction networks, parameter transformations, observation functions, residual functions, etc. The framework follows the paradigm that derivative information should be used for optimization whenever possible. Therefore, all major functions produce and can handle expressions for symbolic derivatives. The methods used in dMod were published in Kaschek et al, 2019, <doi:10.18637/jss.v088.i10>.
Mimics the demo functionality for Shiny apps in a package. Apps stored to the package subdirectory inst/shiny can be called by demoShiny(topic).
Dataset containing information about job listings for data science job roles.
Data screening is an important first step of any statistical analysis. dataMaid auto generates a customizable data report with a thorough summary of the checks and the results that a human can use to identify possible errors. It provides an extendable suite of test for common potential errors in a dataset.
Bindings for additional classification models for use with the parsnip package. Models include flavors of discriminant analysis, such as linear (Fisher (1936) <doi:10.1111/j.1469-1809.1936.tb02137.x>), regularized (Friedman (1989) <doi:10.1080/01621459.1989.10478752>), and flexible (Hastie, Tibshirani, and Buja (1994) <doi:10.1080/01621459.1994.10476866>), as well as naive Bayes classifiers (Hand and Yu (2007) <doi:10.1111/j.1751-5823.2001.tb00465.x>).
The DWD provides gridded radar data for Germany in binary format. dwdradar reads these files and enables a fast conversion into numerical format.
This package implements double hierarchical generalized linear models in which the mean, dispersion parameters for variance of random effects, and residual variance (overdispersion) can be further modeled as random-effect models.
This package contains a range of functions covering the present development of the distributional method for the dichotomisation of continuous outcomes. The method provides estimates with standard error of a comparison of proportions (difference, odds ratio and risk ratio) derived, with similar precision, from a comparison of means. See the URL below or <arXiv:1809.03279> for more information.
An implementation of common higher order functions with syntactic sugar for anonymous function. Provides also a link to dplyr and data.table for common transformations on data frames to work around non standard evaluation by default.
Easy visualization for datasets with more than two categorical variables and additional continuous variables. diceplot is particularly useful for exploring complex categorical data in the context of pathway analysis across multiple conditions. For a detailed documentation please visit <https://dice-and-domino-plot.readthedocs.io/en/latest/>.
For identifying, estimating, and plotting descriptive multidimensional item response theory models, restricted to 3D and dichotomous or polytomous data that fit the two-parameter logistic model or the graded response model. The method is foremost explorative and centered around the plot function that exposes item characteristics and constructs, represented by vector arrows, located in a three-dimensional interactive latent space. The results can be useful for item-level analysis as well as test development.
There are various functions for managing and cleaning data before the application of different approaches. This includes identifying and erasing sudden jumps in dendrometer data not related to environmental change, identifying the time gaps of recordings, and changing the temporal resolution of data to different frequencies. Furthermore, the package calculates daily statistics of dendrometer data, including the daily amplitude of tree growth. Various approaches can be applied to separate radial growth from daily cyclic shrinkage and expansion due to uptake and loss of stem water. In addition, it identifies periods of consecutive days with user-defined climatic conditions in daily meteorological data, then check what trees are doing during that period.