Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Cochran-Mantel-Haenszel methods (Cochran (1954) <doi:10.2307/3001616>; Mantel and Haenszel (1959) <doi:10.1093/jnci/22.4.719>; Landis et al. (1978) <doi:10.2307/1402373>) are a suite of tests applicable to categorical data. A competitor to those tests is the procedure of Nonparametric ANOVA which was initially introduced in Rayner and Best (2013) <doi:10.1111/anzs.12041>. The methodology was then extended in Rayner et al. (2015) <doi:10.1111/anzs.12113>. This package employs functions related to both methodologies and serves as an accompaniment to the book: An Introduction to Cochranâ Mantelâ Haenszel and Non-Parametric ANOVA. The package also contains the data sets used in that text.
This package implements the JSON, INI, YAML and TOML parser for R setting and writing of configuration file. The functionality of this package is similar to that of package config'.
Get insight into a forest of classification trees, by calculating similarities between the trees, and subsequently clustering them. Each cluster is represented by it's most central cluster member. The package implements the methodology described in Sies & Van Mechelen (2020) <doi:10.1007/s00357-019-09350-4>.
This package provides tools for assessing data quality, performing exploratory analysis, and semi-automatic preprocessing of messy data with change tracking for integral dataset cleaning.
Integration of Earth system data from various sources is a challenging task. Except for their qualitative heterogeneity, different data records exist for describing similar Earth system process at different spatio-temporal scales. Data inter-comparison and validation are usually performed at a single spatial or temporal scale, which could hamper the identification of potential discrepancies in other scales. csa package offers a simple, yet efficient, graphical method for synthesizing and comparing observed and modelled data across a range of spatio-temporal scales. Instead of focusing at specific scales, such as annual means or original grid resolution, we examine how their statistical properties change across spatio-temporal continuum.
This package provides tools for factor analysis in high-dimensional settings under copula-based factor models. It includes functions to simulate factor-model data with copula-distributed idiosyncratic errors (e.g., Clayton, Gumbel, Frank, Student t and Gaussian copulas) and to perform diagnostic tests such as the Kaiser-Meyer-Olkin measure and Bartlett's test of sphericity. Estimation routines include principal component based factor analysis, projected principal component analysis, and principal orthogonal complement thresholding for large covariance matrix estimation. The philosophy of the package is described in Guo G. (2023) <doi:10.1007/s00180-022-01270-z>.
Fork of calendR R package to generate ready to print calendars with ggplot2 (see <https://r-coder.com/calendar-plot-r/>) with additional features (backwards compatible). calendRio provides a calendR() function that serves as a drop-in replacement for the upstream version but allows for additional parameters unlocking extra functionality.
Tool for performing computational testing for conditional independence between variables in a dataset. CCI implements permutation in combination with Monte Carlo Cross-Validation in generating null distributions and test statistics. For more details see Computational Test for Conditional Independence (2024) <doi:10.3390/a17080323>.
This package provides a suite of functions for rapid and flexible analysis of codon usage bias. It provides in-depth analysis at the codon level, including relative synonymous codon usage (RSCU), tRNA weight calculations, machine learning predictions for optimal or preferred codons, and visualization of codon-anticodon pairing. Additionally, it can calculate various gene- specific codon indices such as codon adaptation index (CAI), effective number of codons (ENC), fraction of optimal codons (Fop), tRNA adaptation index (tAI), mean codon stabilization coefficients (CSCg), and GC contents (GC/GC3s/GC4d). It also supports both standard and non-standard genetic code tables found in NCBI, as well as custom genetic code tables.
Git hook scripts are useful for identifying simple issues before submission to code review. captain (hook) is an R package to manage and run git pre-commit hooks.
Modeling periodic mortality (or other time-to event) processes from right-censored data. Given observations of a process with a known period (e.g. 365 days, 24 hours), functions determine the number, intensity, timing, and duration of peaks of periods of elevated hazard within a period. The underlying model is a mixed wrapped Cauchy function fitted using maximum likelihoods (details in Gurarie et al. (2020) <doi:10.1111/2041-210X.13305>). The development of these tools was motivated by the strongly seasonal mortality patterns observed in many wild animal populations. Thus, the respective periods of higher mortality can be identified as "mortality seasons".
Load Current Population Survey (CPS) microdata into R using the Census Bureau Data API (<https://www.census.gov/data/developers/data-sets.html>), including basic monthly CPS and CPS ASEC microdata.
Subset and download data from EU Copernicus Marine Service Information: <https://data.marine.copernicus.eu>. Import data on the oceans physical and biogeochemical state from Copernicus into R without the need of external software.
Apply styles to tag elements directly and with the .style pronoun. Using the pronoun, styles are created within the context of a tag element. Change borders, backgrounds, text, margins, layouts, and more.
This package provides a first-principle, phylogeny-aware comparative genomics tool for investigating associations between terms used to annotate genomic components (e.g., Pfam IDs, Gene Ontology terms,) with quantitative or rank variables such as number of cell types, genome size, or density of specific genomic elements. See the project website for more information, documentation and examples, and <doi:10.1016/j.patter.2023.100728> for the full paper.
This package provides a simple, fast algorithm to find the neighbors and similarities of users in user-based filtering systems, to break free from the complex computation of existing similarity formulas and the ability to solve big data.
Simple and seamless access to a variety of StatCan shapefiles for mapping Canadian provinces, regions, forward sortation areas, census divisions, and subdivisions using the popular ggplot2 package.
Simulate one or many frequentist confidence clinical trials based on a specified set of parameters. From a two-arm, single-stage trial to a perpetually run Adaptive Platform Trial, this package offers vast flexibility to customize your trial and observe operational characterisitics over thousands of instances.
Given a patient-sharing network, calculate either the classic care density as proposed by Pollack et al. (2013) <doi:10.1007/s11606-012-2104-7> or the fragmented care density as proposed by Engels et al. (2024) <doi:10.1186/s12874-023-02106-0>. By utilizing the igraph and data.table packages, the provided functions scale well for very large graphs.
This package provides adaptive trend estimation, cycle detection, Fourier harmonic selection, bootstrap confidence intervals, change-point detection, and rolling-origin forecasting. Supports LOESS (Locally Estimated Scatterplot Smoothing), GAM (Generalized Additive Model), and GAMM (Generalized Additive Mixed Model), and automatically handles irregular sampling using the Lomb-Scargle periodogram. Methods implemented in this package are described in Cleveland et al. (1990) <doi:10.2307/2289548>, Wood (2017) <doi:10.1201/9781315370279>, and Scargle (1982) <doi:10.1086/160554>.
This package provides a simple set of classes and methods for mapping between scalar intensity values and colors. There is also support for layering maps on top of one another using alpha composition.
Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf> which was extended and enhanced by Giessing and Tent (2019) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf>.
This package provides Python'-style list comprehensions. List comprehension expressions use usual loops (for(), while() and repeat()) and usual if() as list producers. In many cases it gives more concise notation than standard "*apply + filter" strategy.
This package provides a clustered random forest algorithm for fitting random forests for data of independent clusters, that exhibit within cluster dependence. Details of the method can be found in Young and Buehlmann (2025) <doi:10.48550/arXiv.2503.12634>.