Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to access drug regulatory data from public RESTful APIs including the FDA Open API and the Health Canada Drug Product Database API', retrieving real-time or historical information on drug approvals, adverse events, recalls, and product details. Additionally, the package includes a curated collection of open datasets focused on drugs, pharmaceuticals, treatments, and clinical studies. These datasets cover diverse topics such as treatment dosages, pharmacological studies, placebo effects, drug reactions, misuses of pain relievers, and vaccine effectiveness. The package supports reproducible research and teaching in pharmacology, medicine, and healthcare by integrating reliable international APIs and structured datasets from public, academic, and government sources. For more information on the APIs, see: FDA API <https://open.fda.gov/apis/> and Health Canada API <https://health-products.canada.ca/api/documentation/dpd-documentation-en.html>.
Response Surface Designs (RSDs) involving factors not all at same levels are called Mixed Level RSDs (or Asymmetric RSDs). In many practical situations, RSDs with asymmetric levels will be more suitable as it explores more regions in the design space. (J.S. Mehta and M.N. Das (1968) <doi:10.2307/1267046>. "Asymmetric rotatable designs and orthogonal transformations").This package contains function named ATORDs_I() for generating asymmetric third order rotatable designs (ATORDs) based on third order designs given by Das and Narasimham (1962). Function ATORDs_II() generates asymmetric third order rotatable designs developed using t-design of unequal set sizes, which are smaller in size as compared to design generated by function ATORDs_I(). In general, third order rotatable designs can be classified into two classes viz., designs that are suitable for sequential experimentation and designs for non-sequential experimentation. The sequential experimentation approach involves conducting the trials step by step whereas, in the non-sequential experimentation approach, the entire runs are executed in one go (M. N. Das and V. Narasimham (1962) <doi:10.1214/AOMS/1177704374>. "Construction of Rotatable Designs through Balanced Incomplete Block Designs"). ATORDs_I() and ATORDs_II() functions generate non-sequential asymmetric third order designs. Function named SeqTORD() generates symmetric sequential third order design in blocks and also gives G-efficiency of the given design. Function named Asymseq() generates asymmetric sequential third order designs in blocks (M. Hemavathi, Eldho Varghese, Shashi Shekhar and Seema Jaggi (2020) <doi:10.1080/02664763.2020.1864817>. "Sequential asymmetric third order rotatable designs (SATORDs)"). In response surface design, situations may arise in which some of the factors are qualitative in nature (Jyoti Divecha and Bharat Tarapara (2017) <doi:10.1080/08982112.2016.1217338>. "Small, balanced, efficient, optimal, and near rotatable response surface designs for factorial experiments asymmetrical in some quantitative, qualitative factors"). The Function named QualRSD() generates second order design with qualitative factors along with their D-efficiency and G-efficiency. The function named RotatabilityQ() calculates a measure of rotatability (measure Q, 0 <= Q <= 1) given by Draper and Pukelshiem(1990) for given a design based on a second order model, (Norman R. Draper and Friedrich Pukelsheim(1990) <doi:10.1080/00401706.1990.10484635>. "Another look at rotatability").
We implement a surrogate modeling algorithm to guide simulation-based sample size planning. The method is described in detail in our paper (Zimmer & Debelak (2023) <doi:10.1037/met0000611>). It supports multiple study design parameters and optimization with respect to a cost function. It can find optimal designs that correspond to a desired statistical power or that fulfill a cost constraint. We also provide a tutorial paper (Zimmer et al. (2023) <doi:10.3758/s13428-023-02269-0>).
This package implements nonparametric bootstrap tests for detecting monotonicity in regression functions from Hall, P. and Heckman, N. (2000) <doi:10.1214/aos/1016120363> Includes tools for visualizing results using Nadaraya-Watson kernel regression and supports efficient computation with C++'. Tutorials and shiny application demo are available at <https://www.laylaparast.com/monotonicitytest> and <https://parastlab.shinyapps.io/MonotonicityTest>.
This package contains the MultiFractal Detrended Fluctuation Analysis (MFDFA), MultiFractal Detrended Cross-Correlation Analysis (MFXDFA), and the Multiscale Multifractal Analysis (MMA). The MFDFA() function proposed in this package was used in Laib et al. (<doi:10.1016/j.chaos.2018.02.024> and <doi:10.1063/1.5022737>). See references for more information. Interested users can find a parallel version of the MFDFA() function on GitHub.
Fit Cox proportional hazard models with a weighted partial likelihood. It handles one or multiple endpoints, additional matching and makes it possible to reuse controls for other endpoints Stoer NC and Samuelsen SO (2016) <doi:10.32614/rj-2016-030>.
Distance between multivariate Cauchy distributions, as presented by N. Bouhlel and D. Rousseau (2022) <doi:10.3390/e24060838>. Manipulation of multivariate Cauchy distributions.
This package provides classes to implement, analyze and plot cohort life tables for actuarial calculations. Birth-year dependent cohort mortality tables using a yearly trend to extrapolate from a base year are implemented, as well as period life table, cohort life tables using an age shift, and merged life tables. Additionally, several data sets from various countries are included to provide widely-used tables out of the box.
This package contains the Maddison Project 2018 database, which provides estimates of GDP per capita for all countries in the world between AD 1 and 2016. See <https://www.rug.nl/ggdc/historicaldevelopment/maddison/> for more information.
Procedures to simulate, estimate and diagnose MGARCH processes of BEKK and multivariate GJR (bivariate asymmetric GARCH model) specification.
An open source software package written in R statistical language. It consist in a set of decision making tools to conduct missing person searches. Particularly, it allows computing optimal LR threshold for declaring potential matches in DNA-based database search. More recently mispitools incorporates preliminary investigation data based LRs. Statistical weight of different traces of evidence such as biological sex, age and hair color are presented. For citing mispitools please use the following references: Marsico and Caridi, 2023 <doi:10.1016/j.fsigen.2023.102891> and Marsico, Vigeland et al. 2021 <doi:10.1016/j.fsigen.2021.102519>.
Recently, multiple marginal variable selection methods have been developed and shown to be effective in Gene-Environment interactions studies. We propose a novel marginal Bayesian variable selection method for Gene-Environment interactions studies. In particular, our marginal Bayesian method is robust to data contamination and outliers in the outcome variables. With the incorporation of spike-and-slab priors, we have implemented the Gibbs sampler based on Markov Chain Monte Carlo. The core algorithms of the package have been developed in C++'.
Implementation of two tools to merge Hardware Event Monitors (HEMs) from different subexperiments. Hardware Reading and Merging (HRM), which uses order statistics to merge; and MUlti-Correlation HEM (MUCH) which merges using a multivariate normal distribution. The reference paper for HRM is: S. Vilardell, I. Serra, R. Santalla, E. Mezzetti, J. Abella and F. J. Cazorla, "HRM: Merging Hardware Event Monitors for Improved Timing Analysis of Complex MPSoCs," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp. 3662-3673, Nov. 2020, <doi:10.1109/TCAD.2020.3013051>. For MUCH: S. Vilardell, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla. 2021. "MUCH: exploiting pairwise hardware event monitor correlations for improved timing analysis of complex MPSoCs". In Proceedings of the 36th Annual ACM Symposium on Applied Computing (SAC 21). Association for Computing Machinery. <doi:10.1145/3412841.3441931>. This work has been supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 772773).
Compute the average of a sequence of random vectors in a moving expanding window using a fixed amount of memory.
Friendly implementation of the Mann-Whitney-Wilcoxon test for competitive gene set enrichment analysis.
We develop Multi-source Graph Synthesis (MUGS), an algorithm designed to create embeddings for pediatric Electronic Health Record (EHR) codes by leveraging graphical information from three distinct sources: (1) pediatric EHR data, (2) EHR data from the general patient population, and (3) existing hierarchical medical ontology knowledge shared across different patient populations. See Li et al. (2024) <doi:10.1038/s41746-024-01320-4> for details.
This package provides functions to fit finite mixture of scale mixture of skew-normal (FM-SMSN) distributions, details in Prates, Lachos and Cabral (2013) <doi: 10.18637/jss.v054.i12>, Cabral, Lachos and Prates (2012) <doi:10.1016/j.csda.2011.06.026> and Basso, Lachos, Cabral and Ghosh (2010) <doi:10.1016/j.csda.2009.09.031>.
Implementing a multiple imputation algorithm for multivariate data with missing and censored values under a coarsening at random assumption (Heitjan and Rubin, 1991<doi:10.1214/aos/1176348396>). The multiple imputation algorithm is based on the data augmentation algorithm proposed by Tanner and Wong (1987)<doi:10.1080/01621459.1987.10478458>. The Gibbs sampling algorithm is adopted to to update the model parameters and draw imputations of the coarse data.
This package provides a four step change point detection method that can detect break points with the presence of missing values proposed by Liu and Safikhani (2023) <https://drive.google.com/file/d/1a8sV3RJ8VofLWikTDTQ7W4XJ76cEj4Fg/view?usp=drive_link>.
The Washington Metropolitan Area Transit Authority is a government agency operating light rail and passenger buses in the Washington D.C. area. With a free developer account, access their Metro Transparent Data Sets API <https://developer.wmata.com/> to return data frames of transit data for easy analysis.
Partial Replacement Imputation Estimation (PRIME) can overcome problems caused by missing covariates in additive partially linear model. PRIME conducts imputation and regression simultaneously with known and unknown model structure. More details can be referred to Zishu Zhan, Xiangjie Li and Jingxiao Zhang. (2022) <arXiv:2205.14994>.
This package provides a test of multivariate normality of an unknown sample that does not require estimation of the nuisance parameters, the mean and covariance matrix. Rather, a sequence of transformations removes these nuisance parameters and results in a set of sample matrices that are positive definite. These matrices are uniformly distributed on the space of positive definite matrices in the unit hyper-rectangle if and only if the original data is multivariate normal (Fairweather, 1973, Doctoral dissertation, University of Washington). The package performs a goodness of fit test of this hypothesis. In addition to the test, functions in the package give visualizations of the support region of positive definite matrices for bivariate samples.
Identifying important factors from a large number of potentially important factors of a highly nonlinear and computationally expensive black box model is a difficult problem. Xiao, Joseph, and Ray (2022) <doi:10.1080/00401706.2022.2141897> proposed Maximum One-Factor-at-a-Time (MOFAT) designs for doing this. A MOFAT design can be viewed as an improvement to the random one-factor-at-a-time (OFAT) design proposed by Morris (1991) <doi:10.1080/00401706.1991.10484804>. The improvement is achieved by exploiting the connection between Morris screening designs and Monte Carlo-based Sobol designs, and optimizing the design using a space-filling criterion. This work is supported by a U.S. National Science Foundation (NSF) grant CMMI-1921646 <https://www.nsf.gov/awardsearch/showAward?AWD_ID=1921646>.
Many useful functions and extensions for dealing with meteorological data in the tidy data framework. Extends ggplot2 for better plotting of scalar and vector fields and provides commonly used analysis methods in the atmospheric sciences.