Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Computational routines for estimating local Gaussian parameters. Local Gaussian parameters are useful for characterizing and testing for non-linear dependence within bivariate data. See e.g. Tjostheim and Hufthammer, Local Gaussian correlation: A new measure of dependence, Journal of Econometrics, 2013, Volume 172 (1), pages 33-48 <DOI:10.1016/j.jeconom.2012.08.001>.
Local partial likelihood estimation by Fan, Lin and Zhou(2006)<doi:10.1214/009053605000000796> and simultaneous confidence band is a set of tools to test the covariates-biomarker interaction for survival data. Test for the covariates-biomarker interaction using the bootstrap method and the asymptotic method with simultaneous confidence band (Liu, Jiang and Chen (2015)<doi:10.1002/sim.6563>).
This is a Neural Network regression model implementation using Keras', consisting of 10 Long Short-Term Memory layers that are fully connected along with the rest of the inputs.
Sparklines are small plots (about one line of text high), made popular by Edward Tufte. This package is the interface from R to the LaTeX package sparklines by Andreas Loeffer and Dan Luecking (<http://www.ctan.org/pkg/sparklines>). It can work with Sweave or knitr or other engines that produce TeX. The package can be used to plot vectors, matrices, data frames, time series (in ts or zoo format).
This package provides an l1-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using l1-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, "l1-spectral clustering algorithm: a spectral clustering method using l1-regularization" (2022).
This package creates plots of peptides from shotgun proteomics analysis of secretome and lysate samples. These plots contain associated protein features and scores for potential secretion and truncation.
The main function of the package is to perform backward selection of fixed effects, forward fitting of the random effects, and post-hoc analysis using parallel capabilities. Other functionality includes the computation of ANOVAs with upper- or lower-bound p-values and R-squared values for each model term, model criticism plots, data trimming on model residuals, and data visualization. The data to run examples is contained in package LCF_data.
An easy-to-use ndjson (newline-delimited JSON') logger. It provides a set of wrappers for base R's message(), warning(), and stop() functions that maintain identical functionality, but also log the handler message to an ndjson log file. No change in existing code is necessary to use this package, and only a few additional adjustments are needed to fully utilize its potential.
Based on right or interval censored data, compute the maximum likelihood estimator of a (sub)probability density under the assumption that it is log-concave. For further information see Duembgen, Rufibach and Schuhmacher (2014) <doi:10.1214/14-EJS930>.
This package provides two methods of estimating income inequality statistics from binned income data, such as the income data provided in the Census. These methods use different interpolation techniques to infer the distribution of incomes within income bins. One method is an implementation of Jargowsky and Wheeler's mean-constrained integration over brackets (MCIB). The other method is based on a new technique, Lorenz interpolation, which estimates income inequality by constructing an interpolated Lorenz curve based on the binned income data. These methods can be used to estimate three income inequality measures: the Gini (the default measure returned), the Theil, and the Atkinson's index. Jargowsky and Wheeler (2018) <doi:10.1177/0081175018782579>.
The Gaussian location-scale regression model is a multi-predictor model with explanatory variables for the mean (= location) and the standard deviation (= scale) of a response variable. This package implements maximum likelihood and Markov chain Monte Carlo (MCMC) inference (using algorithms from Girolami and Calderhead (2011) <doi:10.1111/j.1467-9868.2010.00765.x> and Nesterov (2009) <doi:10.1007/s10107-007-0149-x>), a parametric bootstrap algorithm, and diagnostic plots for the model class.
An extendable toolkit for interactive data visualization and exploration.
An implementation of a computational framework for performing robust structured regression with the L2 criterion from Chi and Chi (2021+). Improvements using the majorization-minimization (MM) principle from Liu, Chi, and Lange (2022+) added in Version 2.0.
L-systems or Lindenmayer systems are parallel rewriting systems which can be used to simulate biological forms and certain kinds of fractals. Briefly, in an L-system a series of symbols in a string are replaced iteratively according to rules to give a more complex string. Eventually, the symbols are translated into turtle graphics for plotting. Wikipedia has a very good introduction: en.wikipedia.org/wiki/L-system This package provides basic functions for exploring L-systems.
Genome-wide association (GWAS) analyses of a biomarker that account for the limit of detection.
Functionalities for calculating the local score and calculating statistical relevance (p-value) to find a local Score in a sequence of given distribution (S. Mercier and J.-J. Daudin (2001) <https://hal.science/hal-00714174/>) ; S. Karlin and S. Altschul (1990) <https://pmc.ncbi.nlm.nih.gov/articles/PMC53667/> ; S. Mercier, D. Cellier and F. Charlot (2003) <https://hal.science/hal-00937529v1/> ; A. Lagnoux, S. Mercier and P. Valois (2017) <doi:10.1093/bioinformatics/btw699> ).
Suite of R functions for the estimation of the local false discovery rate (LFDR) using Type II maximum likelihood estimation (MLE).
This package implements non-parametric tests from Higgins (2004, ISBN:0534387756), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with Rcpp for efficiency and R6 for flexible, object-oriented design, the package provides a unified framework for performing or creating custom permutation tests.
Estimation of latent class models with individual covariates for capture-recapture data. See Bartolucci, F. and Forcina, A. (2022), Estimating the size of a closed population by modeling latent and observed heterogeneity, Biometrics, 80(2), ujae017.
Implementation of Locally Scaled Density Based Clustering (LSDBC) algorithm proposed by Bicici and Yuret (2007) <doi:10.1007/978-3-540-71618-1_82>. This package also contains some supporting functions such as betaCV() function and get_spectral() function.
Extracts and creates an analysis pipeline for the JSON data files from Brain Sense sessions using Medtronic's Deep Brain Stimulation surgery electrode implants.
This package provides the tables from the Sean Lahman Baseball Database as a set of R data.frames. It uses the data on pitching, hitting and fielding performance and other tables from 1871 through 2024, as recorded in the 2025 version of the database. Documentation examples show how many baseball questions can be investigated.
This package provides classes and methods for spatially explicit land use change modelling in R.
This package implements the Linear Approach to Threshold with Ergodic Rate (LATER) model, which predicts distributions of reaction times and summarises them with as little as two free parameters. Allows for easy visualisation and comparison of datasets, along with fitting of datasets using the LATER model.