Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Set of wrappers for the ncdf4 package to simplify and extend its reading/writing capabilities into/from multidimensional R arrays.
Allows the user to determine minimum sample sizes that achieve target size and power at a specified alternative. For more information, see â Exact samples sizes for clinical trials subject to size and power constraintsâ by Lloyd, C.J. (2022) Preprint <doi:10.13140/RG.2.2.11828.94085>.
This package provides classes and methods for implementing aquatic ecosystem models, for running these models, and for visualizing their results.
Efficiently impute large scale matrix with missing values via its unbiased low-rank matrix approximation. Our main approach is Hard-Impute algorithm proposed in <https://www.jmlr.org/papers/v11/mazumder10a.html>, which achieves highly computational advantage by truncated singular-value decomposition.
Utilities for building certain kinds of common matrices and models in the extended structural equation modeling package, OpenMx'.
Fits engression models for nonlinear distributional regression. Predictors and targets can be univariate or multivariate. Functionality includes estimation of conditional mean, estimation of conditional quantiles, or sampling from the fitted distribution. Training is done full-batch on CPU (the python version offers GPU-accelerated stochastic gradient descent). Based on "Engression: Extrapolation for nonlinear regression?" by Xinwei Shen and Nicolai Meinshausen (2023). Also supports classification (experimental). <arxiv:2307.00835>.
This package provides a consistent, unified and extensible framework for estimation of parameters for probability distributions, including parameter estimation procedures that allow for weighted samples; the current set of distributions included are: the standard beta, The four-parameter beta, Burr, gamma, Gumbel, Johnson SB and SU, Laplace, logistic, normal, symmetric truncated normal, truncated normal, symmetric-reflected truncated beta, standard symmetric-reflected truncated beta, triangular, uniform, and Weibull distributions; decision criteria and selections based on these decision criteria.
This package provides a small group of functions to read in a data dictionary and the corresponding data table from Excel and to automate the cleaning, re-coding and creation of simple calculated variables. This package was designed to be a companion to the macro-enabled Excel template available on the GitHub site, but works with any similarly-formatted Excel data.
This package provides functions for covariance matrix comparisons, estimation of repeatabilities in measurements and matrices, and general evolutionary quantitative genetics tools. Melo D, Garcia G, Hubbe A, Assis A P, Marroig G. (2016) <doi:10.12688/f1000research.7082.3>.
This package provides a fast, flexible tool for generating disease surveillance reports from data exported from EpiTrax', a central repository for epidemiological data used by public health officials. It provides functions to manipulate EpiTrax datasets, tailor reports to internal or public use, and export reports in CSV, Excel xlsx', or PDF formats.
This package provides simple, fast, and stable functions to fit the normal means model using empirical Bayes. For available models and details, see function ebnm(). Our JSS article, Willwerscheid, Carbonetto, and Stephens (2025) <doi:10.18637/jss.v114.i03>, provides a detailed introduction to the package.
DNA methylation is essential for human, and environment can change the DNA methylation and affect body status. Epigenome-Wide Mediation Analysis Study (EMAS) can find potential mediator CpG sites between exposure (x) and outcome (y) in epigenome-wide. For more information on the methods we used, please see the following references: Tingley, D. (2014) <doi:10.18637/jss.v059.i05>, Turner, S. D. (2018) <doi:10.21105/joss.00731>, Rosseel, D. (2012) <doi:10.18637/jss.v048.i02>.
This comprehensive toolkit for Distributed Elliptical model is designated as "ELIC" (The LIC for Distributed Elliptical Model Analysis) analysis. It is predicated on the assumption that the error term adheres to a Elliptical distribution. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02664763.2022.2053949>.
Create forecasts from multiple predictions using ensemble Bayesian model averaging (EBMA). EBMA models can be estimated using an expectation maximization (EM) algorithm or as fully Bayesian models via Gibbs sampling. The methods in this package are Montgomery, Hollenbach, and Ward (2015) <doi:10.1016/j.ijforecast.2014.08.001> and Montgomery, Hollenbach, and Ward (2012) <doi:10.1093/pan/mps002>.
This package provides methods and utilities for causal emergence. Used to explore and compute various information theory metrics for networks, such as effective information, effectiveness and causal emergence.
This package implements the exponential Factor Copula Model (eFCM) of Castro-Camilo, D. and Huser, R. (2020) for spatial extremes, with tools for dependence estimation, tail inference, and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification. See Castro-Camilo and Huser (2020) <doi:10.1080/01621459.2019.1647842>.
This package provides a toolbox to make it easy to analyze plant disease epidemics. It provides a common framework for plant disease intensity data recorded over time and/or space. Implemented statistical methods are currently mainly focused on spatial pattern analysis (e.g., aggregation indices, Taylor and binary power laws, distribution fitting, SADIE and mapcomp methods). See Laurence V. Madden, Gareth Hughes, Franck van den Bosch (2007) <doi:10.1094/9780890545058> for further information on these methods. Several data sets that were mainly published in plant disease epidemiology literature are also included in this package.
Some EM-type algorithms to estimate parameters for the well-known Heckman selection model are provided in the package. Such algorithms are as follow: ECM(Expectation/Conditional Maximization), ECM(NR)(the Newton-Raphson method is adapted to the ECM) and ECME(Expectation/Conditional Maximization Either). Since the algorithms are based on the EM algorithm, they also have EMâ s main advantages, namely, stability and ease of implementation. Further details and explanations of the algorithms can be found in Zhao et al. (2020) <doi: 10.1016/j.csda.2020.106930>.
The EXPOS model uses a digital elevation model (DEM) to estimate exposed and protected areas for a given hurricane wind direction and inflection angle. The resulting topographic exposure maps can be combined with output from the HURRECON model to estimate hurricane wind damage across a region. For details on the original version of the EXPOS model written in Borland Pascal', see: Boose, Foster, and Fluet (1994) <doi:10.2307/2937142>, Boose, Chamberlin, and Foster (2001) <doi:10.1890/0012-9615(2001)071[0027:LARIOH]2.0.CO;2>, and Boose, Serrano, and Foster (2004) <doi:10.1890/02-4057>.
This package provides tools for simulating from continuous-time individual level models of disease transmission, and carrying out infectious disease data analyses with the same models. The epidemic models considered are distance-based and/or contact network-based models within Susceptible-Infectious-Removed (SIR) or Susceptible-Infectious-Notified-Removed (SINR) compartmental frameworks. <doi:10.18637/jss.v098.i10>.
Conduct one- and two-sample goodness-of-fit tests for univariate data. In the one-sample case, normal, uniform, exponential, Bernoulli, binomial, geometric, beta, Poisson, lognormal, Laplace, asymmetric Laplace, inverse Gaussian, half-normal, chi-squared, gamma, F, Weibull, Cauchy, and Pareto distributions are supported. egof.test() can also test goodness-of-fit to any distribution with a continuous distribution function. A subset of the available distributions can be tested for the composite goodness-of-fit hypothesis, that is, one can test for distribution fit with unknown parameters. P-values are calculated via parametric bootstrap.
Interactive labelling of scatter plots, volcano plots and Manhattan plots using a shiny and plotly interface. Users can hover over points to see where specific points are located and click points on/off to easily label them. Labels can be dragged around the plot to place them optimally. Plots can be exported directly to PDF for publication. For plots with large numbers of points, points can optionally be rasterized as a bitmap, while all other elements (axes, text, labels & lines) are preserved as vector objects. This can dramatically reduce file size for plots with millions of points such as Manhattan plots, and is ideal for publication.
This package creates simple to highly customized tables for a wide selection of descriptive statistics, with or without weighting the data.
Use structural equation modeling to estimate average and conditional effects of a treatment variable on an outcome variable, taking into account multiple continuous and categorical covariates.