Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Transforms away factors with many levels prior to doing an OLS. Useful for estimating linear models with multiple group fixed effects, and for estimating linear models which uses factors with many levels as pure control variables. See Gaure (2013) <doi:10.1016/j.csda.2013.03.024> Includes support for instrumental variables, conditional F statistics for weak instruments, robust and multi-way clustered standard errors, as well as limited mobility bias correction (Gaure 2014 <doi:10.1002/sta4.68>). Since version 3.0, it provides dedicated functions to estimate Poisson models.
This package provides a graphical user interface with an integrated diagrammer for latent variable models from the lavaan package. It offers two core functions: first, lavaangui() launches a web application that allows users to specify models by drawing path diagrams, fitting them, assessing model fit, and more; second, plot_lavaan() creates interactive path diagrams from models specified in lavaan'. Karch (2024) <doi: 10.1080/10705511.2024.2420678> contains a tutorial.
This package provides a framework to load text and excel files through a shiny graphical interface. It allows renaming, transforming, ordering and removing variables. It includes basic exploratory methods such as the mean, median, mode, normality test, histogram and correlation.
Cellular cooperation compromises the established method of calculating clonogenic activity from limiting dilution assay (LDA) data. This tool provides functions that enable robust analysis in presence or absence of cellular cooperation. The implemented method incorporates the same cooperativity module to model the non-linearity associated with cellular cooperation as known from the colony formation assay (Brix et al. (2021) <doi:10.1038/s41596-021-00615-0>: "Analysis of clonogenic growth in vitro." Nature protocols).
This package provides functions to estimate and visualize linear as well as nonlinear impulse responses based on local projections by Jordà (2005) <doi:10.1257/0002828053828518>. The methods and the package are explained in detail in Adämmer (2019) <doi:10.32614/RJ-2019-052>.
This package provides a variety of models to analyze latent variables based on Bayesian learning: the partially CFA (Chen, Guo, Zhang, & Pan, 2020) <DOI: 10.1037/met0000293>; generalized PCFA; partially confirmatory IRM (Chen, 2020) <DOI: 10.1007/s11336-020-09724-3>; Bayesian regularized EFA <DOI: 10.1080/10705511.2020.1854763>; Fully and partially EFA.
Estimate covariance matrices that contain low rank and sparse components.
The Length-Biased Power Garima distribution for computes the probability density, the cumulative density distribution and the quantile function of the distribution, and generates sample values with random variables based on Kittipong and Sirinapa(2021)<DOI: 10.14456/sjst-psu.2021.89>.
This package provides three classes: Queue, PriorityQueue and Stack. Queue is just a "plain vanilla" FIFO queue; PriorityQueue orders items according to priority. Stack implements LIFO.
This is an extension package to logrx', which is a log creation program focused on Clinical Reporting within the Pharma Industry. This package enables a simple shiny-based Add-in that provides a point and click interface to produce a log for a single program.
Useful shiny production-ready modules and helpers such as login window and visualization tools.
This package contains LUE_BIOMASS(),LUE_BIOMASS_VPD(), LUE_YIELD() and LUE_YIELD_VPD() to estimate aboveground biomass and crop yield firstly by calculating the Absorbed Photosynthetically Active Radiation (APAR) and secondly the actual values of light use efficiency with and without vapour presure deficit Shi et al.(2007) <doi:10.2134/agronj2006.0260>.
Log-analytic methods intended for testing multiplicative effects.
Estimate and confidence/credible intervals for an unknown regressor x0 given an observed y0.
Fast binning of multiple variables using parallel processing. A summary of all the variables binned is generated which provides the information value, entropy, an indicator of whether the variable follows a monotonic trend or not, etc. It supports rebinning of variables to force a monotonic trend as well as manual binning based on pre specified cuts. The cut points of the bins are based on conditional inference trees as implemented in the partykit package. The conditional inference framework is described by Hothorn T, Hornik K, Zeileis A (2006) <doi:10.1198/106186006X133933>.
Computations related to group sequential boundaries. Includes calculation of bounds using the Lan-DeMets alpha spending function approach. Based on FORTRAN program ld98 implemented by Reboussin, et al. (2000) <doi:10.1016/s0197-2456(00)00057-x>.
The reference implementation of model equations and default parameters for the toxicokinetic-toxicodynamic (TKTD) model of the Lemna (duckweed) aquatic plant. Lemna is a standard test macrophyte used in ecotox effect studies. The model was described and published by the SETAC Europe Interest Group Effect Modeling. It is a refined description of the Lemna TKTD model published by Schmitt et al. (2013) <doi:10.1016/j.ecolmodel.2013.01.017>.
The log4r package is meant to provide a fast, lightweight, object-oriented approach to logging in R based on the widely-emulated log4j system and etymology.
Generate and correlate synthetic Likert and rating-scale data with predefined means, standard deviations, Cronbach's Alpha, Factor Loading table, coefficients, and other summary statistics. Worked examples and documentation are available in the package articles, accessible via the package website, <https://winzarh.github.io/LikertMakeR/>.
Set of tools for mapping of categorical response variables based on principal component analysis (pca) and multidimensional unfolding (mdu).
This package provides functions to access and test results from a linear model.
Airborne LiDAR (Light Detection and Ranging) interface for data manipulation and visualization. Read/write las and laz files, computation of metrics in area based approach, point filtering, artificial point reduction, classification from geographic data, normalization, individual tree segmentation and other manipulations.
Analysis of stock data ups and downs trend, the stock technical analysis indicators function have trend line, reversal pattern and market trend.
Extensive functions for Lmoments (LMs) and probability-weighted moments (PWMs), distribution parameter estimation, LMs for distributions, LM ratio diagrams, multivariate Lcomoments, and asymmetric (asy) trimmed LMs (TLMs). Maximum likelihood and maximum product spacings estimation are available. Right-tail and left-tail LM censoring by threshold or indicator variable are available. LMs of residual (resid) and reversed (rev) residual life are implemented along with 13 quantile operators for reliability analyses. Exact analytical bootstrap estimates of order statistics, LMs, and LM var-covars are available. Harri-Coble Tau34-squared Normality Test is available. Distributions with L, TL, and added (+) support for right-tail censoring (RC) encompass: Asy Exponential (Exp) Power [L], Asy Triangular [L], Cauchy [TL], Eta-Mu [L], Exp. [L], Gamma [L], Generalized (Gen) Exp Poisson [L], Gen Extreme Value [L], Gen Lambda [L, TL], Gen Logistic [L], Gen Normal [L], Gen Pareto [L+RC, TL], Govindarajulu [L], Gumbel [L], Kappa [L], Kappa-Mu [L], Kumaraswamy [L], Laplace [L], Linear Mean Residual Quantile Function [L], Normal [L], 3p log-Normal [L], Pearson Type III [L], Polynomial Density-Quantile 3 and 4 [L], Rayleigh [L], Rev-Gumbel [L+RC], Rice [L], Singh Maddala [L], Slash [TL], 3p Student t [L], Truncated Exponential [L], Wakeby [L], and Weibull [L].