Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Multivariate Adaptive Regression Spline (MARS) based Artificial Neural Network (ANN) hybrid model is combined Machine learning hybrid approach which selects important variables using MARS and then fits ANN on the extracted important variables.
This package implements a Monte Carlo Based Heterogeneity Test for standardized mean differences (d), Fisher-transformed Pearson's correlations (r), and natural-logarithm-transformed odds ratio (OR) in Meta-Analysis Studies. Depending on the presence of moderators, this Monte Carlo Based Test can be implemented in the random or mixed-effects model. This package uses rma() function from the R package metafor to obtain parameter estimates and likelihood, so installation of R package metafor is required. This approach refers to the studies of Hedges (1981) <doi:10.3102/10769986006002107>, Hedges & Olkin (1985, ISBN:978-0123363800), Silagy, Lancaster, Stead, Mant, & Fowler (2004) <doi:10.1002/14651858.CD000146.pub2>, Viechtbauer (2010) <doi:10.18637/jss.v036.i03>, and Zuckerman (1994, ISBN:978-0521432009).
Provide a sample size calculator for micro-randomized trials (MRTs) based on methodology developed in Sample Size Calculations for Micro-randomized Trials in mHealth by Liao et al. (2016) <DOI:10.1002/sim.6847>.
Estimation equations are from a variety of sources and associated error estimation.
Allows for fitting of maximum likelihood models using Markov chains on phylogenetic trees for analysis of discrete character data. Examples of such discrete character data include restriction sites, gene family presence/absence, intron presence/absence, and gene family size data. Hypothesis-driven user- specified substitution rate matrices can be estimated. Allows for biologically realistic models combining constrained substitution rate matrices, site rate variation, site partitioning, branch-specific rates, allowing for non-stationary prior root probabilities, correcting for sampling bias, etc. See Dang and Golding (2016) <doi:10.1093/bioinformatics/btv541> for more details.
This package provides methods and tools for mixed frequency time series data analysis. Allows estimation, model selection and forecasting for MIDAS regressions.
Code to support a systems biology research program from inception through publication. The methods focus on dimension reduction approaches to detect patterns in complex, multivariate experimental data and places an emphasis on informative visualizations. The goal for this project is to create a package that will evolve over time, thereby remaining relevant and reflective of current methods and techniques. As a result, we encourage suggested additions to the package, both methodological and graphical.
This grants the functionality of the Maxar Geospatial Platform (MGP) Streaming API. It can search for images using the WFS method. It can Download images using WMS WMTS. It can also Download a full resolution image.
Aggregates a set of trees with the same leaves to create a consensus tree. The trees are typically obtained via hierarchical clustering, hence the hclust format is used to encode both the aggregated trees and the final consensus tree. The method is exact and proven to be O(nqlog(n)), n being the individuals and q being the number of trees to aggregate.
Simulating data and fitting multi-species N-mixture models using nimble'. Includes features for handling zero-inflation and temporal correlation, Bayesian inference, model diagnostics, parameter estimation, and predictive checks. Designed for ecological studies with zero-altered or time-series data. Mimnagh, N., Parnell, A., Prado, E., & Moral, R. A. (2022) <doi:10.1007/s10651-022-00542-7>. Royle, J. A. (2004) <doi:10.1111/j.0006-341X.2004.00142.x>.
Calculates the Most Probable Number (MPN) to quantify the concentration (density) of microbes in serial dilutions of a laboratory sample (described in Jarvis, 2010 <doi:10.1111/j.1365-2672.2010.04792.x>). Also calculates the Aerobic Plate Count (APC) for similar microbial enumeration experiments.
This package provides tools for working with medical coding schemas such as the International Classification of Diseases (ICD). Includes functions for comorbidity classification algorithms such as the Pediatric Complex Chronic Conditions (PCCC), Charlson, and Elixhauser indices.
This package provides a hybrid of the K-means algorithm and a Majorization-Minimization method to introduce a robust clustering. The reference paper is: Julien Mairal, (2015) <doi:10.1137/140957639>. The two most important functions in package MajKMeans are cluster_km() and cluster_MajKm(). cluster_km() clusters data without Majorization-Minimization and cluster_MajKm() clusters data with Majorization-Minimization method. Both of these functions calculate the sum of squares (SS) of clustering.
Implemented are various tests for semi-parametric repeated measures and general MANOVA designs that do neither assume multivariate normality nor covariance homogeneity, i.e., the procedures are applicable for a wide range of general multivariate factorial designs. In addition to asymptotic inference methods, novel bootstrap and permutation approaches are implemented as well. These provide more accurate results in case of small to moderate sample sizes. Furthermore, post-hoc comparisons are provided for the multivariate analyses. Friedrich, S., Konietschke, F. and Pauly, M. (2019) <doi:10.32614/RJ-2019-051>.
With the provision of several tools and templates the MOSAIC project (DFG-Grant Number HO 1937/2-1) supports the implementation of a central data management in epidemiological research projects. The MOQA package enables epidemiologists with none or low experience in R to generate basic data quality reports for a wide range of application scenarios. See <https://mosaic-greifswald.de/> for more information. Please read and cite the corresponding open access publication (using the former package-name) in METHODS OF INFORMATION IN MEDICINE by M. Bialke, H. Rau, T. Schwaneberg, R. Walk, T. Bahls and W. Hoffmann (2017) <doi:10.3414/ME16-01-0123>. <https://methods.schattauer.de/en/contents/most-recent-articles/issue/2483/issue/special/manuscript/27573/show.html>.
The main functions perform mixed models analysis by least squares or REML by adding the function r() to formulas of lm() and glm(). A collection of text-book statistics for higher education is also included, e.g. modifications of the functions lm(), glm() and associated summaries from the package stats'.
Perform calculations for the WHO International Reference Reagents for the microbiome. Using strain, species or genera abundance tables generated through analysis of 16S ribosomal RNA sequencing or shotgun sequencing which included a reference reagent. This package will calculate measures of sensitivity, False positive relative abundance, diversity, and similarity based on mean average abundances with respect to the reference reagent.
Simple tools to perform mixture optimization based on the desirability package by Max Kuhn. It also provides a plot routine using ggplot2 and patchwork'.
Analyses species distribution models and evaluates their performance. It includes functions for variation partitioning, extracting variable importance, computing several metrics of model discrimination and calibration performance, optimizing prediction thresholds based on a number of criteria, performing multivariate environmental similarity surface (MESS) analysis, and displaying various analytical plots. Initially described in Barbosa et al. (2013) <doi:10.1111/ddi.12100>.
It implements a new procedure of variable selection in the context of redundancy between explanatory variables, which holds true with high dimensional data (Grimonprez et al. (2023) <doi:10.18637/jss.v106.i03>).
This package implements the Maki (2012) <doi:10.1016/j.econmod.2012.05.006> cointegration test that allows for an unknown number of structural breaks. The test detects cointegration relationships in the presence of up to five structural breaks in the intercept and/or slope coefficients. Four different model specifications are supported: level shifts, level shifts with trend, regime shifts, and trend with regime shifts. The method is described in Maki (2012) "Tests for cointegration allowing for an unknown number of breaks" <doi:10.1016/j.econmod.2012.05.006>.
Implementation of the sampling and aggregation method for the covariate shift maximin effect, which was proposed in <arXiv:2011.07568>. It constructs the confidence interval for any linear combination of the high-dimensional maximin effect.
This package implements a minimum-spanning-tree-based heuristic for k-means clustering using a union-find disjoint set and the algorithm in Kruskal (1956) <doi:10.1090/S0002-9939-1956-0078686-7>.
Functionalities for facilitating systematic reviews, data extractions, and meta-analyses. It includes a GUI (graphical user interface) to help screen the abstracts and titles of bibliographic data; tools to assign screening effort across multiple collaborators/reviewers and to assess inter- reviewer reliability; tools to help automate the download and retrieval of journal PDF articles from online databases; figure and image extractions from PDFs; web scraping of citations; automated and manual data extraction from scatter-plot and bar-plot images; PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagrams; simple imputation tools to fill gaps in incomplete or missing study parameters; generation of random effects sizes for Hedges d, log response ratio, odds ratio, and correlation coefficients for Monte Carlo experiments; covariance equations for modelling dependencies among multiple effect sizes (e.g., effect sizes with a common control); and finally summaries that replicate analyses and outputs from widely used but no longer updated meta-analysis software (i.e., metawin). Funding for this package was supported by National Science Foundation (NSF) grants DBI-1262545 and DEB-1451031. CITE: Lajeunesse, M.J. (2016) Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for R. Methods in Ecology and Evolution 7, 323-330 <doi:10.1111/2041-210X.12472>.