Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Shadow Document Object Model is a web standard that offers component style and markup encapsulation. It is a critically important piece of the Web Components story as it ensures that a component will work in any environment even if other CSS or JavaScript is at play on the page. Custom HTML tags can't be directly identified with selenium tools, because Selenium doesn't provide any way to deal with shadow elements. Using this plugin you can handle any custom HTML tags.
Fit, summarize, and predict for a variety of spatial statistical models applied to point-referenced and areal (lattice) data. Parameters are estimated using various methods. Additional modeling features include anisotropy, non-spatial random effects, partition factors, big data approaches, and more. Model-fit statistics are used to summarize, visualize, and compare models. Predictions at unobserved locations are readily obtainable. For additional details, see Dumelle et al. (2023) <doi:10.1371/journal.pone.0282524>.
Studies otolith shape variation among fish populations. Otoliths are calcified structures found in the inner ear of teleost fish and their shape has been known to vary among several fish populations and stocks, making them very useful in taxonomy, species identification and to study geographic variations. The package extends previously described software used for otolith shape analysis by allowing the user to automatically extract closed contour outlines from a large number of images, perform smoothing to eliminate pixel noise described in Haines and Crampton (2000) <doi:10.1111/1475-4983.00148>, choose from conducting either a Fourier or wavelet see Gençay et al (2001) <doi:10.1016/S0378-4371(00)00463-5> transform to the outlines and visualize the mean shape. The output of the package are independent Fourier or wavelet coefficients which can be directly imported into a wide range of statistical packages in R. The package might prove useful in studies of any two dimensional objects.
Training and validation of a custom (or data-driven) Structural Equation Models using layer-wise Deep Neural Networks or node-wise Machine Learning algorithms, which extend the fitting procedures of the 'SEMgraph R package <doi:10.32614/CRAN.package.SEMgraph>.
Ordinary and modified statistics for symmetrical linear regression models with small samples. The supported ordinary statistics include Wald, score, likelihood ratio and gradient. The modified statistics include score, likelihood ratio and gradient. Diagnostic tools associated with the fitted model are implemented. For more details see Medeiros and Ferrari (2017) <DOI:10.1111/stan.12107>.
Formulates a sparse distance weighted discrimination (SDWD) for high-dimensional classification and implements a very fast algorithm for computing its solution path with the L1, the elastic-net, and the adaptive elastic-net penalties. More details about the methodology SDWD is seen on Wang and Zou (2016) (<doi:10.1080/10618600.2015.1049700>).
This package provides an efficient method to recover the missing block of an approximately low-rank matrix. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design [Cai T, Cai TT, Zhang A (2016) <doi:10.1080/01621459.2015.1021005>]. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. The main function in our package, smc.FUN(), is for recovery of the missing block A22 of an approximately low-rank matrix A given the other blocks A11, A12, A21.
Access statistical information on welfare and health in Finland from the Sotkanet open data portal <https://sotkanet.fi/sotkanet/fi/index>.
Small area estimation unit level models (Battese-Harter-Fuller model) with a Bayesian Hierarchical approach. See also Rao & Molina (2015, ISBN:978-1-118-73578-7) and Battese et al. (1988) <doi:10.1080/01621459.1988.10478561>.
This package provides three types of datetime pickers for usage in a Shiny UI. A datetime picker is an input field for selecting both a date and a time.
The developed function is designed for the generation of spatial grids based on user-specified longitude and latitude coordinates. The function first validates the input longitude and latitude values, ensuring they fall within the appropriate geographic ranges. It then creates a polygon from the coordinates and determines the appropriate Universal Transverse Mercator zone based on the provided hemisphere and longitude values. Subsequently, transforming the input Shapefile to the Universal Transverse Mercator projection when necessary. Finally, a spatial grid is generated with the specified interval and saved as a Shapefile. For method details see, Brus,D.J.(2022).<DOI:10.1201/9781003258940>. The function takes into account crucial parameters such as the hemisphere (north or south), desired grid interval, and the output Shapefile path. The developed function is an efficient tool, simplifying the process of empty spatial grid generation for applications such as, geo-statistical analysis, digital soil mapping product generation, etc. Whether for environmental studies, urban planning, or any other geo-spatial analysis, this package caters to the diverse needs of users working with spatial data, enhancing the accessibility and ease of spatial data processing and visualization.
It builds dynamic R shiny based dashboards to analyze any CSV files. It provides simple dashboard design to subset the data, perform exploratory data analysis and preliminary machine learning (supervised and unsupervised). It also provides filters based on columns of interest.
Implementation of all possible forms of 2x2 and 3x3 space-filling curves, i.e., the generalized forms of the Hilbert curve <https://en.wikipedia.org/wiki/Hilbert_curve>, the Peano curve <https://en.wikipedia.org/wiki/Peano_curve> and the Peano curve in the meander type (Figure 5 in <https://eudml.org/doc/141086>). It can generates nxn curves expanded from any specific level-1 units. It also implements the H-curve and the three-dimensional Hilbert curve.
This package provides a novel spatial topic model to integrate both cell type and spatial information to identify the complex spatial tissue architecture on multiplexed tissue images without human intervention. The Package implements a collapsed Gibbs sampling algorithm for inference. SpaTopic is scalable to large-scale image datasets without extracting neighborhood information for every single cell. For more details on the methodology, see <https://xiyupeng.github.io/SpaTopic/>.
The Stratified-Petersen Analysis System (SPAS) is designed to estimate abundance in two-sample capture-recapture experiments where the capture and recaptures are stratified. This is a generalization of the simple Lincoln-Petersen estimator. Strata may be defined in time or in space or both, and the s strata in which marking takes place may differ from the t strata in which recoveries take place. When s=t, SPAS reduces to the method described by Darroch (1961) <doi:10.2307/2332748>. When s<t, SPAS implements the methods described in Plante, Rivest, and Tremblay (1988) <doi:10.2307/2533994>. Schwarz and Taylor (1998) <doi:10.1139/f97-238> describe the use of SPAS in estimating return of salmon stratified by time and geography. A related package, BTSPAS, deals with temporal stratification where a spline is used to model the distribution of the population over time as it passes the second capture location. This is the R-version of the (now obsolete) standalone Windows program of the same name.
Easily calculate precession and obliquity from an orbital solution (defaults to ZB18a from Zeebe and Lourens (2019) <doi:10.1126/science.aax0612>) and assumed or reconstructed values for tidal dissipation (Td) and dynamical ellipticity (Ed). This is a translation and adaptation of the C'-code in the supplementary material to Zeebe and Lourens (2022) <doi:10.1029/2021PA004349>, with further details on the methodology described in Zeebe (2022) <doi:10.3847/1538-3881/ac80f8>. The name of the C'-routine is snvec', which refers to the key units of computation: spin vector s and orbit normal vector n.
Quickly and flexibly calculates weights for survey data, in order to correct for survey non-response or other sampling issues. Uses rake weighting, a common technique also know as rim weighting or iterative proportional fitting. This technique allows for weighting on multiple variables, even when the interlocked distribution of the two variables is not known. Interacts with Thomas Lumley's survey package, as described in Lumley, Thomas (2011, ISBN:978-1-118-21093-2). Adds additional functionality, more adaptable syntax, and error-checking to the base weighting functionality in survey.'.
Design a Bayesian seamless multi-arm biomarker-enriched phase II/III design with the survival endpoint with allowing sample size re-estimation. James M S Wason, Jean E Abraham, Richard D Baird, Ioannis Gournaris, Anne-Laure Vallier, James D Brenton, Helena M Earl, Adrian P Mander (2015) <doi:10.1038/bjc.2015.278>. Guosheng Yin, Nan Chen, J. Jack Lee (2018) <doi:10.1007/s12561-017-9199-7>. Ying Yuan, Beibei Guo, Mark Munsell, Karen Lu, Amir Jazaeri (2016) <doi:10.1002/sim.6971>.
This package provides a scrolling chat interface with multiline input, suitable for creating chatbot apps based on Large Language Models (LLMs). Designed to work particularly well with the ellmer R package for calling LLMs.
An independent, reproducible, and flexible Spatially Resolved Transcriptomics (SRT) simulation framework that can be used to facilitate the development of SRT analytical methods for a wide variety of SRT-specific analyses. It utilizes spatial localization information to simulate SRT expression count data in a reproducible and scalable fashion. Two major simulation schemes are implemented in SRTsim': reference-based and reference-free.
Helpers for addressing the issue of disconnected spatial units. It allows for convenient adding and removal of neighbourhood connectivity between areal units prior to modelling, with the visual aid of maps. Post-modelling, it reduces the human workload for extracting, tidying and mapping predictions from areal models.
This package provides functions and Datasets from Lohr, S. (1999), Sampling: Design and Analysis, Duxbury.
This package provides functionality for image processing and shape analysis in the context of reconstructed medical images generated by deep learning-based methods or standard image processing algorithms and produced from different medical imaging types, such as X-ray, Computational Tomography (CT), Magnetic Resonance Imaging (MRI), and pathology imaging. Specifically, offers tools to segment regions of interest and to extract quantitative shape descriptors for applications in signal processing, statistical analysis and modeling, and machine learning.
This package implements a custom matrix input field.