Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Differential expression analysis is a prevalent method utilised in the examination of diverse biological data. The reproducibility-optimized test statistic (ROTS) modifies a t-statistic based on the data's intrinsic characteristics and ranks features according to their statistical significance for differential expression between two or more groups (f-statistic). Focussing on proteomics and metabolomics, the current ROTS implementation cannot account for technical or biological covariates such as MS batches or gender differences among the samples. Consequently, we developed LimROTS, which employs a reproducibility-optimized test statistic utilising the limma methodology to simulate complex experimental designs. LimROTS is a hybrid method integrating empirical bayes and reproducibility-optimized statistics for robust analysis of proteomics and metabolomics data.
Illumina Human Illumina expression annotation data (chip lumiHumanAll) assembled using data from public repositories.
The Lheuristic package identifies scatterpots that follow and L-shaped, negative distribution. It can be used to identify genes regulated by methylation by integration of an expression and a methylation array. The package uses two different methods to detect expression and methyaltion L- shapped scatterplots. The parameters can be changed to detect other scatterplot patterns.
The Barnes benchmark dataset can be used to evaluate the algorithms for Illumina microarrays. It measured a titration series of two human tissues, blood and placenta, and includes six samples with the titration ratio of blood and placenta as 100:0, 95:5, 75:25, 50:50, 25:75 and 0:100. The samples were hybridized on HumanRef-8 BeadChip (Illumina, Inc) in duplicate. The data is loaded as an LumiBatch Object (see documents in the lumi package).
Interface to construct LRBase package (LRBase.XXX.eg.db).
LACE is an algorithmic framework that processes single-cell somatic mutation profiles from cancer samples collected at different time points and in distinct experimental settings, to produce longitudinal models of cancer evolution. The approach solves a Boolean Matrix Factorization problem with phylogenetic constraints, by maximizing a weighed likelihood function computed on multiple time points.
This package contains 30 Affymetrix CEL files for 7 Adenocarcinoma (AC) and 8 Squamous cell carcinoma (SCC) lung cancer samples taken at random from 3 GEO datasets (GSE10245, GSE18842 and GSE2109) and other 15 samples from a dataset produced by the organizers of the IMPROVER Diagnostic Signature Challenge available from GEO (GSE43580).
loci2path performs statistics-rigorous enrichment analysis of eQTLs in genomic regions of interest. Using eQTL collections provided by the Genotype-Tissue Expression (GTEx) project and pathway collections from MSigDB.
This package includes mappings information between different types of Illumina IDs of Illumina Mouse chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Mouse chips to RefSeq IDs with mapping qualities information.
LIONESS, or Linear Interpolation to Obtain Network Estimates for Single Samples, can be used to reconstruct single-sample networks (https://arxiv.org/abs/1505.06440). This code implements the LIONESS equation in the lioness function in R to reconstruct single-sample networks. The default network reconstruction method we use is based on Pearson correlation. However, lionessR can run on any network reconstruction algorithms that returns a complete, weighted adjacency matrix. lionessR works for both unipartite and bipartite networks.
Here we present Link-HD, an approach to integrate heterogeneous datasets, as a generalization of STATIS-ACT (“Structuration des Tableaux A Trois Indices de la Statistique–Analyse Conjointe de Tableaux”), a family of methods to join and compare information from multiple subspaces. However, STATIS-ACT has some drawbacks since it only allows continuous data and it is unable to establish relationships between samples and features. In order to tackle these constraints, we incorporate multiple distance options and a linear regression based Biplot model in order to stablish relationships between observations and variable and perform variable selection.
The les package estimates Loci of Enhanced Significance (LES) in tiling microarray data. These are regions of regulation such as found in differential transcription, CHiP-chip, or DNA modification analysis. The package provides a universal framework suitable for identifying differential effects in tiling microarray data sets, and is independent of the underlying statistics at the level of single probes.
LBE is an efficient procedure for estimating the proportion of true null hypotheses, the false discovery rate (and so the q-values) in the framework of estimating procedures based on the marginal distribution of the p-values without assumption for the alternative hypothesis.
This package includes mappings information between different types of Illumina IDs of Illumina Rat chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Rat chips to RefSeq IDs with mapping qualities information.
This is an external ExperimentData package for LRcell. This data package contains the gene enrichment scores calculated from scRNA-seq dataset which indicates the gene enrichment of each cell type in certain brain region. LRcell package is used to identify specific sub-cell types that drives the changes observed in a bulk RNA-seq differential gene expression experiment. For more details, please visit: https://github.com/marvinquiet/LRcell.
This LPE library is used to do significance analysis of microarray data with small number of replicates. It uses resampling based FDR adjustment, and gives less conservative results than traditional BH or BY procedures. Data accepted is raw data in txt format from MAS4, MAS5 or dChip. Data can also be supplied after normalization. LPE library is primarily used for analyzing data between two conditions. To use it for paired data, see LPEP library. For using LPE in multiple conditions, use HEM library.
The LoomExperiment package provide a means to easily convert the Bioconductor "Experiment" classes to loom files and vice versa.
This package provides annotation databases that support the package LymphoSeq.
LegATo is a suite of open-source software tools for longitudinal microbiome analysis. It is extendable to several different study forms with optimal ease-of-use for researchers. Microbiome time-series data presents distinct challenges including complex covariate dependencies and variety of longitudinal study designs. This toolkit will allow researchers to determine which microbial taxa are affected over time by perturbations such as onset of disease or lifestyle choices, and to predict the effects of these perturbations over time, including changes in composition or stability of commensal bacteria.
This package includes mappings information between different types of Illumina IDs of Illumina Human chips and nuIDs. It also includes mappings of all nuIDs included in Illumina Human chips to RefSeq IDs with mapping qualities information.
data from PMID 19096707; prototype for managing multiple NGS samples.
This package provides a framework for adjustment on cell type size when performing bulk transcripomics deconvolution. The main framework function provides a means of reference normalization using cell size scale factors. It allows for marker selection and deconvolution using non-negative least squares (NNLS) by default. The framework is extensible for other marker selection and deconvolution algorithms, and users may reuse the generics, methods, and classes for these when developing new algorithms.
The tool integrates data from biological networks with transcriptomes, displaying a heatmap with surface curves to evidence the altered regions.
When we combine gene-editing technology and sequencing technology, we need to reconstruct a lineage tree from alleles generated and calculate the similarity between each pair of groups. FindIndel() and IndelForm() function will help you align each read to reference sequence and generate scar form strings respectively. IndelIdents() function will help you to define a scar form for each cell or read. IndelPlot() function will help you to visualize the distribution of deletion and insertion. TagProcess() function will help you to extract indels for each cell or read. TagDist() function will help you to calculate the similarity between each pair of groups across the indwells they contain. BuildTree() function will help you to reconstruct a tree. PlotTree() function will help you to visualize the tree.