Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for the longitudinal genetic random field method (He et al., 2015, <doi:10.1111/biom.12310>) to test the association between a longitudinally measured quantitative outcome and a set of genetic variants in a gene/region.
This package provides a variety of latent Markov models, including hidden Markov models, hidden semi-Markov models, state-space models and continuous-time variants can be formulated and estimated within the same framework via directly maximising the likelihood function using the so-called forward algorithm. Applied researchers often need custom models that standard software does not easily support. Writing tailored R code offers flexibility but suffers from slow estimation speeds. We address these issues by providing easy-to-use functions (written in C++ for speed) for common tasks like the forward algorithm. These functions can be combined into custom models in a Lego-type approach, offering up to 10-20 times faster estimation via standard numerical optimisers. To aid in building fully custom likelihood functions, several vignettes are included that show how to simulate data from and estimate all the above model classes.
This package provides a collection of helper functions for multiple regression models fitted by lm(). Most of them are simple functions for simple tasks which can be done with coding, but may not be easy for occasional users of R. Most of the tasks addressed are those sometimes needed when using the manymome package (Cheung and Cheung, 2023, <doi:10.3758/s13428-023-02224-z>) and stdmod package (Cheung, Cheung, Lau, Hui, and Vong, 2022, <doi:10.1037/hea0001188>). However, they can also be used in other scenarios.
This package provides functions for the implementation of a density goodness-of-fit test, based on piecewise approximation of the L2 distance.
This package contains different algorithms and construction methods for optimal Latin hypercube designs (LHDs) with flexible sizes. Our package is comprehensive since it is capable of generating maximin distance LHDs, maximum projection LHDs, and orthogonal and nearly orthogonal LHDs. Detailed comparisons and summary of all the algorithms and construction methods in this package can be found at Hongzhi Wang, Qian Xiao and Abhyuday Mandal (2021) <doi:10.48550/arXiv.2010.09154>. This package is particularly useful in the area of Design and Analysis of Experiments (DAE). More specifically, design of computer experiments.
The goal of this package is to cover the most common steps in Loss Given Default (LGD) rating model development. The main procedures available are those that refer to bivariate and multivariate analysis. In particular two statistical methods for multivariate analysis are currently implemented รข OLS regression and fractional logistic regression. Both methods are also available within different blockwise model designs and both have customized stepwise algorithms. Descriptions of these customized designs are available in Siddiqi (2016) <doi:10.1002/9781119282396.ch10> and Anderson, R.A. (2021) <doi:10.1093/oso/9780192844194.001.0001>. Although they are explained for PD model, the same designs are applicable for LGD model with different underlying regression methods (OLS and fractional logistic regression). To cover other important steps for LGD model development, it is recommended to use LGDtoolkit package along with PDtoolkit', and monobin (or monobinShiny') packages. Additionally, LGDtoolkit provides set of procedures handy for initial and periodical model validation.
An implementation of a method of extending a logistic regression model beyond linear effects of the co-variates. The extension in is constructed by first equating the logistic regression model to a naive Bayes model where all the margins are specified to follow natural exponential distributions conditional on Y, that is, a model for Y given X that is specified through the distribution of X given Y, where the columns of X are assumed to be mutually independent conditional on Y. Subsequently, the model is expanded by adding vine - copulas to relax the assumption of mutual independence, where pair-copulas are added in a stage-wise, forward selection manner. Some heuristics are employed during the process of selecting edges, as well as the families of pair-copula models. After each component is added, the parameters are updated by a (smaller) number of gradient steps to maximise the likelihood. When the algorithm has stopped adding edges, based the criterion that a new edge should improve the likelihood more than k times the number new parameters, the parameters are updated with a larger number of gradient steps, or until convergence.
Maximum likelihood estimation of log-binomial regression with special functionality when the MLE is on the boundary of the parameter space.
Nonparametric methods for landmark prediction of long-term survival outcomes, incorporating covariate and short-term event information. The package supports the construction of flexible varying-coefficient models that use discrete covariates, as well as multiple continuous covariates. The goal is to improve prediction accuracy when censored short-term events are available as predictors, using robust nonparametric procedures that do not require correct model specification and avoid restrictive parametric assumptions found in alternative methods. More information on these methods can be found in Parast et al. 2012 <doi:10.1080/01621459.2012.721281>, Parast et al. 2011 <doi:10.1002/bimj.201000150>, and Parast and Cai 2013 <doi:10.1002/sim.5776>. A tutorial for this package is available here: <https://www.laylaparast.com/landpred>.
Generate a local library copy with relevant packages. All packages currently found within the search path - except base packages - will be copied to the directory provided and can be used later on with the .libPaths() function.
Interactive visualization of effects, response functions and marginal effects for different kinds of regression models. In this version linear regression models, generalized linear models, generalized additive models and linear mixed-effects models are supported. Major features are the interactive approach and the handling of the effects of categorical covariates: if two or more factors are used as covariates every combination of the levels of each factor is treated separately. The automatic calculation of marginal effects and a number of possibilities to customize the graphical output are useful features as well.
This package provides easy access for sentiment lexicons for those who want to do text analysis in Portuguese texts. As of now, two Portuguese lexicons are available: SentiLex-PT02 and OpLexicon (v2.1 and v3.0).
Allows you to read and change the state of LIFX smart light bulbs via the LIFX developer api <https://api.developer.lifx.com/>. Covers most LIFX api endpoints, including changing light color and brightness, selecting lights by id, group or location as well as activating effects.
This package performs likelihood-based inference for stationary time series extremes. The general approach follows Fawcett and Walshaw (2012) <doi:10.1002/env.2133>. Marginal extreme value inferences are adjusted for cluster dependence in the data using the methodology in Chandler and Bate (2007) <doi:10.1093/biomet/asm015>, producing an adjusted log-likelihood for the model parameters. A log-likelihood for the extremal index is produced using the K-gaps model of Suveges and Davison (2010) <doi:10.1214/09-AOAS292>. These log-likelihoods are combined to make inferences about extreme values. Both maximum likelihood and Bayesian approaches are available.
Create custom labels, badges, certificates and other documents. Automate the production of potentially large numbers of herbarium and collection labels, accreditation badges, attendance and participation certificates, etc, and deliver them automatically. Documents are generated in PDF format, which requires a working installation of LaTeX', such as TinyTeX'.
This package provides a collection of helper functions and illustrative datasets to support learning and teaching of data science with R. The package is designed as a companion to the book <https://book-data-science-r.netlify.app>, making key data science techniques accessible to individuals with minimal coding experience. Functions include tools for data partitioning, performance evaluation, and data transformations (e.g., z-score and min-max scaling). The included datasets are curated to highlight practical applications in data exploration, modeling, and multivariate analysis. An early inspiration for the package came from an ancient Persian idiom about "eating the liveR," symbolizing deep and immersive engagement with knowledge.
Fits and tests logistic joinpoint models.
This package implements the LPC method of Witten&Tibshirani(Annals of Applied Statistics 2008) for identification of significant genes in a microarray experiment.
Fits semi-confirmatory structural equation modeling (SEM) via penalized likelihood (PL) or penalized least squares (PLS). For details, please see Huang (2020) <doi:10.18637/jss.v093.i07>.
The landmark approach allows survival predictions to be updated dynamically as new measurements from an individual are recorded. The idea is to set predefined time points, known as "landmark times", and form a model at each landmark time using only the individuals in the risk set. This package allows the longitudinal data to be modelled either using the last observation carried forward or linear mixed effects modelling. There is also the option to model competing risks, either through cause-specific Cox regression or Fine-Gray regression. To find out more about the methods in this package, please see <https://isobelbarrott.github.io/Landmarking/articles/Landmarking>.
Log-analytic methods intended for testing multiplicative effects.
This package implements a Gibbs sampler to do linear regression with multiple covariates, multiple responses, Gaussian measurement errors on covariates and responses, Gaussian intrinsic scatter, and a covariate prior distribution which is given by either a Gaussian mixture of specified size or a Dirichlet process with a Gaussian base distribution. Described further in Mantz (2016) <DOI:10.1093/mnras/stv3008>.
An updated implementation of R package ranger by Wright et al, (2017) <doi:10.18637/jss.v077.i01> for training and predicting from random forests, particularly suited to high-dimensional data, and for embedding in Multiple Imputation by Chained Equations (MICE) by van Buuren (2007) <doi:10.1177/0962280206074463>. Ensembles of classification and regression trees are currently supported. Sparse data of class dgCMatrix (R package Matrix') can be directly analyzed. Conventional bagged predictions are available alongside an efficient prediction for MICE via the algorithm proposed by Doove et al (2014) <doi:10.1016/j.csda.2013.10.025>. Trained forests can be written to and read from storage. Survival and probability forests are not supported in the update, nor is data of class gwaa.data (R package GenABEL'); use the original ranger package for these analyses.
This package contains a suite of shiny applications meant to explore linear model inference feature through simulation and games.