Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Use R to interface with the ETRADE API <https://developer.etrade.com/home>. Functions include authentication, trading, quote requests, account information, and option chains. A user will need an ETRADE brokerage account and ETRADE API approval. See README for authentication process and examples.
Can be used to simultaneously estimate networks (Gaussian Graphical Models) in data from different groups or classes via Joint Graphical Lasso. Tuning parameters are selected via information criteria (AIC / BIC / extended BIC) or cross validation.
Facilitates the aggregation of species geographic ranges from vector or raster spatial data, and that enables the calculation of various morphological and phylogenetic community metrics across geography. Citation: Title, PO, DL Swiderski and ML Zelditch (2022) <doi:10.1111/2041-210X.13914>.
Fast and memory-less computation of the energy statistics related quantities for vectors and matrices. References include: Szekely G. J. and Rizzo M. L. (2014), <doi:10.1214/14-AOS1255>. Szekely G. J. and Rizzo M. L. (2023), <ISBN:9781482242744>. Tsagris M. and Papadakis M. (2025). <doi:10.48550/arXiv.2501.02849>.
This package provides R access to election results data. Wraps elex (https://github.com/newsdev/elex/), a Python package and command line tool for fetching and parsing Associated Press election results.
The new yield tables developed by the Northwest German Forest Research Institute (NW-FVA) provide a forest management tool for the five main commercial tree species oak, beech, spruce, Douglas-fir and pine for northwestern Germany. The new method applied for deriving yield tables combines measurements of growth and yield trials with growth simulations using a state-of-the-art single-tree growth simulator. By doing so, the new yield tables reflect the current increment level and the recommended graduated thinning from above is the underlying management concept. The yield tables are provided along with methods for deriving the site index and for interpolating between age and site indices and extrapolating beyond age and site index ranges. The inter-/extrapolations are performed traditionally by the rule of proportion or with a functional approach.
This package provides a tool that allows users to generate various indices for evaluating statistical models. The fitstat() function computes indices based on the fitting data. The valstat() function computes indices based on the validation data set. Both fitstat() and valstat() will return 16 indices SSR: residual sum of squares, TRE: total relative error, Bias: mean bias, MRB: mean relative bias, MAB: mean absolute bias, MAPE: mean absolute percentage error, MSE: mean squared error, RMSE: root mean square error, Percent.RMSE: percentage root mean squared error, R2: coefficient of determination, R2adj: adjusted coefficient of determination, APC: Amemiya's prediction criterion, logL: Log-likelihood, AIC: Akaike information criterion, AICc: corrected Akaike information criterion, BIC: Bayesian information criterion, HQC: Hannan-Quin information criterion. The lower the better for the SSR, TRE, Bias, MRB, MAB, MAPE, MSE, RMSE, Percent.RMSE, APC, AIC, AICc, BIC and HQC indices. The higher the better for R2 and R2adj indices. Petre Stoica, P., Selén, Y. (2004) <doi:10.1109/MSP.2004.1311138>\n Zhou et al. (2023) <doi:10.3389/fpls.2023.1186250>\n Ogana, F.N., Ercanli, I. (2021) <doi:10.1007/s11676-021-01373-1>\n Musabbikhah et al. (2019) <doi:10.1088/1742-6596/1175/1/012270>.
Researchers often use the bootstrap to understand a sample drawn from a population with unknown distribution. The exact bootstrap method is a practical tool for exploring the distribution of small sample size data. For a sample of size n, the exact bootstrap method generates the entire space of n to the power of n resamples and calculates all realizations of the selected statistic. The exactamente package includes functions for implementing two bootstrap methods, the exact bootstrap and the regular bootstrap. The exact_bootstrap() function applies the exact bootstrap method following methodologies outlined in Kisielinska (2013) <doi:10.1007/s00180-012-0350-0>. The regular_bootstrap() function offers a more traditional bootstrap approach, where users can determine the number of resamples. The e_vs_r() function allows users to directly compare results from these bootstrap methods. To augment user experience, exactamente includes the function exactamente_app() which launches an interactive shiny web application. This application facilitates exploration and comparison of the bootstrap methods, providing options for modifying various parameters and visualizing results.
This package provides functions that compute probabilistic excursion sets, contour credibility regions, contour avoiding regions, and simultaneous confidence bands for latent Gaussian random processes and fields. The package also contains functions that calculate these quantities for models estimated with the INLA package. The main references for excursions are Bolin and Lindgren (2015) <doi:10.1111/rssb.12055>, Bolin and Lindgren (2017) <doi:10.1080/10618600.2016.1228537>, and Bolin and Lindgren (2018) <doi:10.18637/jss.v086.i05>. These can be generated by the citation function in R.
Facilitates basic spatial edge correction to point pattern data.
Conducts inference in statistical models for extreme values (de Carvalho et al (2012), <doi:10.1080/03610926.2012.709905>; de Carvalho and Davison (2014), <doi:10.1080/01621459.2013.872651>; Einmahl et al (2016), <doi:10.1111/rssb.12099>).
Support for measurement errors in R vectors, matrices and arrays: automatic uncertainty propagation and reporting. Documentation about errors is provided in the paper by Ucar, Pebesma & Azcorra (2018, <doi:10.32614/RJ-2018-075>), included in this package as a vignette; see citation("errors") for details.
Enables simulation of water piping networks using EPANET'. The package provides functions from the EPANET programmer's toolkit as R functions so that basic or customized simulations can be carried out from R. The package uses EPANET version 2.2 from Open Water Analytics <https://github.com/OpenWaterAnalytics/EPANET/releases/tag/v2.2>.
This package contains logic for computing sparse principal components via the EESPCA method, which is based on an approximation of the eigenvector/eigenvalue identity. Includes logic to support execution of the TPower and rifle sparse PCA methods, as well as logic to estimate the sparsity parameters used by EESPCA, TPower and rifle via cross-validation to minimize the out-of-sample reconstruction error. H. Robert Frost (2021) <doi:10.1080/10618600.2021.1987254>.
Given the scores from decision makers, the analytic hierarchy process can be conducted easily.
Estimates the time-varying reproduction number, rate of spread, and doubling time using a range of open-source tools (Abbott et al. (2020) <doi:10.12688/wellcomeopenres.16006.1>), and current best practices (Gostic et al. (2020) <doi:10.1101/2020.06.18.20134858>). It aims to help users avoid some of the limitations of naive implementations in a framework that is informed by community feedback and is actively supported.
This package provides tools to estimate the genome size of polyploid species using k-mer frequencies. This package includes functions to process k-mer frequency data and perform genome size estimation by fitting k-mer frequencies with a normal distribution model. It supports handling of complex polyploid genomes and offers various options for customizing the estimation process. The basic method findGSE is detailed in Sun, Hequan, et al. (2018) <doi:10.1093/bioinformatics/btx637>.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to implement analyses of plot species distributions, topography, demography, and biomass. It also includes a torus translation test to determine habitat associations of tree species as described by Zuleta et al. (2018) <doi:10.1007/s11104-018-3878-0>. To learn more about ForestGEO visit <https://forestgeo.si.edu/>.
The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.
Full Consistency Method (FUCOM) for multi-criteria decision-making (MCDM), developed by Dragam Pamucar in 2018 (<doi:10.3390/sym10090393>). The goal of the method is to determine the weights of criteria such that the deviation from full consistency is minimized. Users provide a character vector specifying the ranking of each criterion according to its significance, starting from the criterion expected to have the highest weight to the least significant one. Additionally, users provide a numeric vector specifying the priority values for each criterion. The comparison is made with respect to the first-ranked (most significant) criterion. The function returns the optimized weights for each criterion (summing to 1), the comparative priority (Phi) values, the mathematical transitivity condition (w) value, and the minimum deviation from full consistency (DFC).
This package provides tools to support sensible statistics for functional response analysis.
This package creates a HTML widget which displays the results of searching for a pattern in files in a given git repository, including all its branches. The results can also be returned in a dataframe.
Open-source package for computing likelihood ratios in kinship testing and human identification cases. It has the core function of the software GENis, developed by Fundación Sadosky. It relies on a Bayesian Networks framework and is particularly well suited to efficiently perform large-size queries against databases of missing individuals.
The Flow Analysis Summary Statistics Tool for R, fasstr', provides various functions to tidy and screen daily stream discharge data, calculate and visualize various summary statistics and metrics, and compute annual trending and volume frequency analyses. It features useful function arguments for filtering of and handling dates, customizing data and metrics, and the ability to pull daily data directly from the Water Survey of Canada hydrometric database (<https://collaboration.cmc.ec.gc.ca/cmc/hydrometrics/www/>).