Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimation of both single- and multiple-assignment Regression Discontinuity Designs (RDDs). Provides both parametric (global) and non-parametric (local) estimation choices for both sharp and fuzzy designs, along with power analysis and assumption checks. Introductions to the underlying logic and analysis of RDDs are in Thistlethwaite, D. L., Campbell, D. T. (1960) <doi:10.1037/h0044319> and Lee, D. S., Lemieux, T. (2010) <doi:10.1257/jel.48.2.281>.
Enhances the R Optimization Infrastructure ('ROI') package with the SCS solver for solving convex cone problems.
Collection of tools to develop options strategies, value option contracts using the Black-Scholes-Merten option pricing model and calculate the option Greeks. Hull, John C. "Options, Futures, and Other Derivatives" (1997, ISBN:0-13-601589-1). Fischer Black, Myron Scholes (1973) "The Pricing of Options and Corporate Liabilities" <doi:10.1086/260062>.
This package provides a modified implementation of stepwise regression that greedily searches the space of interactions among features in order to build polynomial regression models. Furthermore, the hypothesis tests conducted are valid-post model selection due to the use of a revisiting procedure that implements an alpha-investing rule. As a result, the set of rejected sequential hypotheses is proven to control the marginal false discover rate. When not searching for polynomials, the package provides a statistically valid algorithm to run and terminate stepwise regression. For more information, see Johnson, Stine, and Foster (2019) <arXiv:1510.06322>.
This package creates and maintains a build process for complex analytic tasks in R. Package allows to easily generate Makefile for the (GNU) make tool, which drives the build process by (in parallel) executing build commands in order to update results accordingly to given dependencies on changed data or updated source files.
This package provides functions in this package will import filtered variant call format (VCF) files of SNPs data and generate data sets to detect copy number variants, visualize them and do downstream analyses with copy number variants(e.g. Environmental association analyses).
Utilities for processing input and output files associated with the Raven Hydrological Modelling Framework. Includes various plotting functions, model diagnostics, reading output files into extensible time series format, and support for writing Raven input files. The RavenR package is also archived at Chlumsky et al. (2020) <doi:10.5281/zenodo.4248183>. The Raven Hydrologic Modelling Framework method can be referenced with Craig et al. (2020) <doi:10.1016/j.envsoft.2020.104728>.
Computes the power resulting from completely randomized and rerandomized experiments with two groups. Furthermore, computes the sample size necessary to obtain a desired level of power for completely randomized and rerandomized experiments.
This package implements the fast iterative shrinkage-thresholding algorithm (FISTA) algorithm to fit a Gamma distribution with an elastic net penalty as described in Chen, Arakvin and Martin (2018) <doi:10.48550/arXiv.1804.07780>. An implementation for the case of the exponential distribution is also available, with details available in Chen and Martin (2018) <doi:10.2139/ssrn.3085672>.
Easy to use interface for conducting meta-analysis in R. This package is an Rcmdr-plugin, which allows the user to conduct analyses in a menu-driven, graphical user interface environment (e.g., CMA, SPSS). It uses recommended procedures as described in The Handbook of Research Synthesis and Meta-Analysis (Cooper, Hedges, & Valentine, 2009).
This package provides random number generating functions that are much more context aware than the built-in functions. The functions are also much safer, as they check for incompatible values, and more reproducible.
For any two way feature-set from a pair of pre-processed omics data, 3 different true discovery proportions (TDP), namely pairwise-TDP, column-TDP and row-TDP are calculated. Due to embedded closed testing procedure, the choice of feature-sets can be changed infinite times and even after seeing the data without any change in type I error rate. For more details refer to Ebrahimpoor et al., (2024) <doi:10.48550/arXiv.2410.19523>.
This is an R wrapper from the AWS Command Line Interface that provides methods to manage the user configuration on Amazon Web Service. You can create as many profiles as you want, manage them, and delete them. The profiles created with this tool work with all AWS products such as S3, Glacier, and EC2. It also provides a function to automatically install AWS CLI, but you can download it and install it manually if you prefer.
Plots multiple run charts, finds successive signals of improvement, and revises medians when each signal occurs. Finds runs above, below, or on both sides of the median, and returns a plot and a data.table summarising original medians and any revisions, for all groups within the supplied data.
This package provides a robust alternative to the traditional principal component estimator is proposed within the framework of factor models, known as Robust Exponential Factor Analysis, specifically designed for the modeling of high-dimensional datasets with heavy-tailed distributions. The algorithm estimates the latent factors and the loading by minimizing the exponential squared loss function. To determine the appropriate number of factors, we propose a modified rank minimization technique, which has been shown to significantly enhance finite-sample performance. For more detail of Robust Exponential Factor Analysis, please refer to Hu et al. (2026) <doi:10.1016/j.jmva.2025.105567>.
Enhances the R Optimization Infrastructure ('ROI') package with the quadratic solver HiGHS'. More information about HiGHS can be found at <https://highs.dev>.
This package provides functions to construct efficient row-column designs for 3-level factorial experiments in 3 rows. The designs ensure the estimation of all main effects (full efficiency) and two factor interactions in minimum replications. For more details, see Dey, A. and Mukerjee, R. (2012) <doi:10.1016/j.spl.2012.06.014> and Dash, S., Parsad, R., and Gupta, V. K. (2013) <doi:10.1007/s40003-013-0059-5>.
Function for generating random gender and ethnicity correct first and/or last names. Names are chosen proportionally based upon their probability of appearing in a large scale data base of real names.
This package provides a collection of ROI optimization problems based on the NETLIB-LP collection. Netlib is a software repository, which amongst many other software for scientific computing contains a collection of linear programming problems. The purpose of this package is to make this problems easily accessible from R as ROI optimization problems.
This package provides a framework for unit testing for realistic minimalists, where we distinguish between expected, acceptable, current, fallback, ideal, or regressive behaviour. It can also be used for monitoring third-party software projects for changes.
It provides external jars required for the rjdverse (as rjd3toolkit', rjd3x13 and rjd3tramoseats').
This package provides functions for detecting spatial clusters using the flexible spatial scan statistic developed by Tango and Takahashi (2005) <doi:10.1186/1476-072X-4-11>. This package implements a wrapper for the C routine used in the FleXScan 3.1.2 <https://sites.google.com/site/flexscansoftware/home> developed by Takahashi, Yokoyama, and Tango. For details, see Otani et al. (2021) <doi:10.18637/jss.v099.i13>.
Automatic, semi-automatic, and manual functions for generating color maps from images. The idea is to simplify the colors of an image according to a metric that is useful for the user, using deterministic methods whenever possible. Many images will be clustered well using the out-of-the-box functions, but the package also includes a toolbox of functions for making manual adjustments (layer merging/isolation, blurring, fitting to provided color clusters or those from another image, etc). Also includes export methods for other color/pattern analysis packages (pavo, patternize, colordistance).
This package produces tables with the level of replication (number of replicates) and the experimental uncoded values of the quantitative factors to be used for rotatable Central Composite Design (CCD) experimentation and a 2-D contour plot of the corresponding variance of the predicted response according to Mead et al. (2012) <doi:10.1017/CBO9781139020879> design_ccd(), and analyzes CCD data with response surface methodology ccd_analysis(). A rotatable CCD provides values of the variance of the predicted response that are concentrically distributed around the average treatment combination used in the experimentation, which with uniform precision (implied by the use of several replicates at the average treatment combination) improves greatly the search and finding of an optimum response. These properties of a rotatable CCD represent undeniable advantages over the classical factorial design, as discussed by Panneton et al. (1999) <doi:10.13031/2013.13267> and Mead et al. (2012) <doi:10.1017/CBO9781139020879.018> among others.