Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a set of functions to simulate National Football League seasons including the sophisticated tie-breaking procedures.
This package implements various simple function utilities and flexible pipelines to generate circular images for visualizing complex genomic and network data analysis features.
Routines for fitting and simulating data under autoregressive fractionally integrated moving average (ARFIMA) models, without the constraint of covariance stationarity. Two fitting methods are implemented, a pseudo-maximum likelihood method and a minimum distance estimator. Mayoral, L. (2007) <doi:10.1111/j.1368-423X.2007.00202.x>. Beran, J. (1995) <doi:10.1111/j.2517-6161.1995.tb02054.x>.
Addressing crucial research questions often necessitates a small sample size due to factors such as distinctive target populations, rarity of the event under study, time and cost constraints, ethical concerns, or group-level unit of analysis. Many readily available analytic methods, however, do not accommodate small sample sizes, and the choice of the best method can be unclear. The npboottprm package enables the execution of nonparametric bootstrap tests with pooled resampling to help fill this gap. Grounded in the statistical methods for small sample size studies detailed in Dwivedi, Mallawaarachchi, and Alvarado (2017) <doi:10.1002/sim.7263>, the package facilitates a range of statistical tests, encompassing independent t-tests, paired t-tests, and one-way Analysis of Variance (ANOVA) F-tests. The nonparboot() function undertakes essential computations, yielding detailed outputs which include test statistics, effect sizes, confidence intervals, and bootstrap distributions. Further, npboottprm incorporates an interactive shiny web application, nonparboot_app(), offering intuitive, user-friendly data exploration.
Factorize binary matrices into rank-k components using the logistic function in the updating process. See e.g. Tomé et al (2015) <doi:10.1007/s11045-013-0240-9> .
This package contains functions to query and visualize the Neuroimaging features associated with genetically regulated gene expression (GReX). The primary utility, neuroimaGene(), relies on a list of user-defined genes and returns a table of neuroimaging features (NIDPs) associated with each gene. This resource is designed to assist in the interpretation of genome-wide and transcriptome-wide association studies that evaluate brain related traits. Bledsoe (2024) <doi:10.1016/j.ajhg.2024.06.002>. In addition there are several visualization functions that generate summary plots and 2-dimensional visualizations of regional brain measures. Mowinckel (2020).
This package provides functions for nominal data mining based on bipartite graphs, which build a pipeline for analysis and missing values imputation. Methods are mainly from the paper: Jafari, Mohieddin, et al. (2021) <doi:10.1101/2021.03.18.436040>, some new ones are also included.
Non-negative Matrix Factorization.
Utilities for unambiguous, neat and legible representation of data (date, time stamp, numbers, percentages and strings) for presentation of analysis , aiming for elegance and consistency. The purpose of this package is to format data, that is better for presentation and any automation jobs that reports numbers.
Estimate the non-linear odds ratio and plot it against a continuous exposure.
This package provides a set of functions providing the implementation of the network meta-analysis model with dose-response relationships, predicted values of the fitted model and dose-response plots in a frequentist way.
Implementation of the two error variance estimation methods in high-dimensional linear models of Yu, Bien (2017) <arXiv:1712.02412>.
The robustness of many of the statistical techniques, such as factor analysis, applied in the social sciences rests upon the assumption of item-level normality. However, when dealing with real data, these assumptions are often not met. The Box-Cox transformation (Box & Cox, 1964) <http://www.jstor.org/stable/2984418> provides an optimal transformation for non-normal variables. Yet, for large datasets of continuous variables, its application in current software programs is cumbersome with analysts having to take several steps to normalise each variable. We present an R package normalr that enables researchers to make convenient optimal transformations of multiple variables in datasets. This R package enables users to quickly and accurately: (1) anchor all of their variables at 1.00, (2) select the desired precision with which the optimal lambda is estimated, (3) apply each unique exponent to its variable, (4) rescale resultant values to within their original X1 and X(n) ranges, and (5) provide original and transformed estimates of skewness, kurtosis, and other inferential assessments of normality.
Digital map data of Japan for choropleth mapping, including a circle cartogram.
This package provides a set of functions to scrape and analyze rugby data. Supports competitions including the National Rugby League, New South Wales Cup, Queensland Cup, Super League, and various representative and women's competitions. Includes functions to fetch player statistics, match results, ladders, venues, and coaching data. Designed to assist analysts, fans, and researchers in exploring historical and current rugby league data. See Woods et al. (2017) <doi:10.1123/ijspp.2016-0187> for an example of rugby league performance analysis methodology.
The number of distinct alleles observed in a DNA mixture is informative of the number of contributors to the mixture. The package provides methods for computing the probability distribution of the number of distinct alleles in a mixture for a given set of allele frequencies. The mixture contributors may be related according to a provided pedigree.
Fit and compare nonlinear mixed-effects models in differential equations with flexible dosing information commonly seen in pharmacokinetics and pharmacodynamics (Almquist, Leander, and Jirstrand 2015 <doi:10.1007/s10928-015-9409-1>). Differential equation solving is by compiled C code provided in the rxode2 package (Wang, Hallow, and James 2015 <doi:10.1002/psp4.12052>).
This permutation based hypothesis test, suited for several types of data supported by the estimateNetwork function of the bootnet package (Epskamp & Fried, 2018), assesses the difference between two networks based on several invariance measures (network structure invariance, global strength invariance, edge invariance, several centrality measures, etc.). Network structures are estimated with l1-regularization. The Network Comparison Test is suited for comparison of independent (e.g., two different groups) and dependent samples (e.g., one group that is measured twice). See van Borkulo et al. (2021), available from <doi:10.1037/met0000476>.
This package provides an htmlwidgets <https://www.htmlwidgets.org/> interface to NGL.js <http://nglviewer.org/ngl/api/>. NGLvieweR can be used to visualize and interact with protein databank ('PDB') and structural files in R and Shiny applications. It includes a set of API functions to manipulate the viewer after creation in Shiny.
Robust nonparametric bootstrap and permutation tests for goodness of fit, distribution equivalence, location, correlation, and regression problems, as described in Helwig (2019a) <doi:10.1002/wics.1457> and Helwig (2019b) <doi:10.1016/j.neuroimage.2019.116030>. Univariate and multivariate tests are supported. For each problem, exact tests and Monte Carlo approximations are available. Five different nonparametric bootstrap confidence intervals are implemented. Parallel computing is implemented via the parallel package.
This package provides a navigation menu to enable pipe-friendly data processing for hierarchical data structures. By activating the menu items, you can perform operations on each item while maintaining the overall structure in attributes.
This package provides a simple function for easier package loading and auto-installation.
This package performs nonparametric tests for equality of location against ordered alternatives.
This package provides a program for Bayesian analysis of univariate normal mixtures with an unknown number of components, following the approach of Richardson and Green (1997) <doi:10.1111/1467-9868.00095>. This makes use of reversible jump Markov chain Monte Carlo methods that are capable of jumping between the parameter sub-spaces corresponding to different numbers of components in the mixture. A sample from the full joint distribution of all unknown variables is thereby generated, and this can be used as a basis for a thorough presentation of many aspects of the posterior distribution.