Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Point and interval estimation of linear parameters with data obtained from complex surveys (including stratified and clustered samples) when randomization techniques are used. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. Estimators and variances for 14 randomized response methods for qualitative variables and 7 randomized response methods for quantitative variables are also implemented. In addition, some data sets from surveys with these randomization methods are included in the package.
Reads in continuous glucose monitor data of many different formats, calculates a host of glycemic variability metrics, and plots glucose over time.
Modularizes source code. Keeps the global environment clean, explicifies interdependencies. Inspired by RequireJS'<http://requirejs.org/>.
Standard and extensible Eddy-Covariance data post-processing (Wutzler et al. (2018) <doi:10.5194/bg-15-5015-2018>) includes uStar-filtering, gap-filling, and flux-partitioning. The Eddy-Covariance (EC) micrometeorological technique quantifies continuous exchange fluxes of gases, energy, and momentum between an ecosystem and the atmosphere. It is important for understanding ecosystem dynamics and upscaling exchange fluxes. (Aubinet et al. (2012) <doi:10.1007/978-94-007-2351-1>). This package inputs pre-processed (half-)hourly data and supports further processing. First, a quality-check and filtering is performed based on the relationship between measured flux and friction velocity (uStar) to discard biased data (Papale et al. (2006) <doi:10.5194/bg-3-571-2006>). Second, gaps in the data are filled based on information from environmental conditions (Reichstein et al. (2005) <doi:10.1111/j.1365-2486.2005.001002.x>). Third, the net flux of carbon dioxide is partitioned into its gross fluxes in and out of the ecosystem by night-time based and day-time based approaches (Lasslop et al. (2010) <doi:10.1111/j.1365-2486.2009.02041.x>).
An implementation of the QUEFTS (Quantitative Evaluation of the Native Fertility of Tropical Soils) model. The model (1) estimates native nutrient (N, P, K) supply of soils from a few soil chemical properties; and (2) computes crop yield given that supply, crop parameters, fertilizer application, and crop attainable yield. See Janssen et al. (1990) <doi:10.1016/0016-7061(90)90021-Z> for the technical details and Sattari et al. (2014) <doi:10.1016/j.fcr.2013.12.005> for a recent evaluation and improvements.
Selected functions for simulation and regression of integrated Isothermal Titration Calorimetry (ITC) data with the most commonly used one-to-one binding model.
Implementation of a Recurrent Neural Network architectures in native R, including Long Short-Term Memory (Hochreiter and Schmidhuber, <doi:10.1162/neco.1997.9.8.1735>), Gated Recurrent Unit (Chung et al., <arXiv:1412.3555>) and vanilla RNN.
HTML formats and templates for rmarkdown documents, with some extra features such as automatic table of contents, lightboxed figures, dynamic crosstab helper.
This package provides a tool to read and manipulate data generated from RiverWare'(TM) <http://www.riverware.org/> simulations. RiverWare and RiverSMART generate data in "rdf", "csv", and "nc" format. This package provides an interface to read, aggregate, and summarize data from one or more simulations in a dplyr pipeline.
Utilities for reading, writing, and managing RCDF files, including encryption and decryption support. It offers a flexible interface for handling data stored in encrypted Parquet format, along with metadata extraction, key management, and secure operations using Advanced Encryption Standard (AES) and Rivest-Shamir-Adleman (RSA) encryption.
The RJDBC package is an implementation of R's DBI interface using JDBC as a back-end. This allows R to connect to any DBMS that has a JDBC driver.
Queries data from RDAP servers.
Quantitative Structure-Activity Relationship (QSAR) modeling is a valuable tool in computational chemistry and drug design, where it aims to predict the activity or property of chemical compounds based on their molecular structure. In this vignette, we present the rQSAR package, which provides functions for variable selection and QSAR modeling using Multiple Linear Regression (MLR), Partial Least Squares (PLS), and Random Forest algorithms.
This package implements the algorithm by Pourahmadi and Wang (2015) <doi:10.1016/j.spl.2015.06.015> for generating a random p x p correlation matrix. Briefly, the idea is to represent the correlation matrix using Cholesky factorization and p(p-1)/2 hyperspherical coordinates (i.e., angles), sample the angles from a particular distribution and then convert to the standard correlation matrix form. The angles are sampled from a distribution with pdf proportional to sin^k(theta) (0 < theta < pi, k >= 1) using the efficient sampling algorithm described in Enes Makalic and Daniel F. Schmidt (2018) <arXiv:1809.05212>.
Convenience functions to make some common tasks with right-to-left string printing easier, more convenient and with no need to remember long Unicode characters. Specifically helpful for right-to-left languages such as Arabic, Persian and Hebrew.
Cross validate large genetic data while specifying clinical variables that should always be in the model using the function cv(). An ROC plot from the cross validation data with AUC can be obtained using rocplot(), which also can be used to compare different models. Framework was built to handle genetic data, but works for any data.
Reads in sample description and slide description files and annotates the expression values taken from GenePix results files (text file format used by many microarray scanner and software providers). After normalization data can be visualized as boxplot, heatmap or dotplot.
This tool proposes a new ranking algorithm that utilizes a "Y*WAASB" biplot generated by the metan'. The aim of the current package is to effectively distinguish the top-ranked genotypes in MET (Multi-Environmental Trials). For a detailed explanation of the process of obtaining "WAASB", "WAASBY" indices, and a "Y*WAASB" biplot, refer to the manual included in this package as well as the study by Olivoto & Lúcio (2020) <doi:10.1111/2041-210X.13384>. In this context, "WAASB" refers to the "Weighted Average of Absolute Scores" provided by Olivoto et al. (2019) <doi:10.2134/agronj2019.03.0220>, which quantifies the stability of genotypes across different environments using linear mixed-effect models. To run the package, you need to extract the "WAASB" and "WAASBY" coefficients using the metan and apply them. This tool utilizes PCA (Principal Component Analysis) and differentiates the entries which may be genotypes, hybrids, varieties, etc using "WAASB", "WAASBY", and a combination of the specified trait and WAASB index.
This package provides a set of tools for working with Romanian personal numeric codes. The core is a validation function which applies several verification criteria to assess the validity of numeric codes. This is accompanied by functionality for extracting the different components of a personal numeric code. A personal numeric code is issued to all Romanian residents either at birth or when they obtain a residence permit.
This package provides a programmatic interface to the Web Service methods provided by the Global Biodiversity Information Facility (GBIF; <https://www.gbif.org/developer/summary>). GBIF is a database of species occurrence records from sources all over the globe. rgbif includes functions for searching for taxonomic names, retrieving information on data providers, getting species occurrence records, getting counts of occurrence records, and using the GBIF tile map service to make rasters summarizing huge amounts of data.
Generate SpatRaster objects, as defined by the terra package, from digital images, using a specified spatial object as a geographical reference.
This package implements simple Hamiltonian Monte Carlo routines in R for sampling from any desired target distribution which is continuous and smooth. See Neal (2017) <arXiv:1701.02434> for further details on Hamiltonian Monte Carlo. Automatic parameter selection is not supported.
Read and write Matlab MAT files from R. The rmatio package supports reading MAT version 4, MAT version 5 and MAT compressed version 5. The rmatio package can write version 5 MAT files and version 5 files with variable compression.
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized clinical trials. Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>. Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>. Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>. Marlena Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.1093/biomet/asaf029>. Xiaoyu Qiu, Yuhan Qian, Jaehwan Yi, Jinqiu Wang, Yu Du, Yanyao Yi, Ting Ye (2025) <doi:10.48550/arXiv.2408.12541>.