Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Estimates continuous time weights for performing causal survival analysis. For instance, weighted Nelson-Aalen or Kaplan-Meier estimates can be given a causal interpretation. See Ryalen, Stensrud, and Røysland (2019) <doi:10.1007/s10985-019-09468-y> and Ryalen (2019) <https://www.duo.uio.no/handle/10852/70353> for theory and examples.
This package provides a very fast and robust interface to ArcGIS Geocoding Services'. Provides capabilities for reverse geocoding, finding address candidates, character-by-character search autosuggestion, and batch geocoding. The public ArcGIS World Geocoder is accessible for free use via arcgisgeocode for all services except batch geocoding. arcgisgeocode also integrates with arcgisutils to provide access to custom locators or private ArcGIS World Geocoder hosted on ArcGIS Enterprise'. Learn more in the Geocode service API reference <https://developers.arcgis.com/rest/geocode/api-reference/overview-world-geocoding-service.htm>.
This package provides functions to access data from public RESTful APIs including World Bank API and REST Countries API', retrieving real-time or historical information related to Algeria. The package enables users to query economic indicators and international demographic and geopolitical statistics in a reproducible way. It is designed for researchers, analysts, and developers who require reliable and programmatic access to Algerian data through established APIs. For more information on the APIs, see: World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392> and REST Countries API <https://restcountries.com/>.
Use the Amazon Alexa Web Information Services API to find information about domains, including the kind of content that they carry, how popular are they---rank and traffic history, sites linking to them, among other things. See <https://aws.amazon.com/awis/> for more information.
Plot stacked areas and confidence bands as filled polygons, or add polygons to existing plots. A variety of input formats are supported, including vectors, matrices, data frames, formulas, etc.
Computes various stability parameters from Additive Main Effects and Multiplicative Interaction (AMMI) analysis results such as Modified AMMI Stability Value (MASV), Sums of the Absolute Value of the Interaction Principal Component Scores (SIPC), Sum Across Environments of Genotype-Environment Interaction Modelled by AMMI (AMGE), Sum Across Environments of Absolute Value of Genotype-Environment Interaction Modelled by AMMI (AV_(AMGE)), AMMI Stability Index (ASI), Modified ASI (MASI), AMMI Based Stability Parameter (ASTAB), Annicchiarico's D Parameter (DA), Zhang's D Parameter (DZ), Averages of the Squared Eigenvector Values (EV), Stability Measure Based on Fitted AMMI Model (FA), Absolute Value of the Relative Contribution of IPCs to the Interaction (Za). Further calculates the Simultaneous Selection Index for Yield and Stability from the computed stability parameters. See the vignette for complete list of citations for the methods implemented.
This package provides functions in this package fit a stratified Cox proportional hazards and a proportional subdistribution hazards model by extending Zhang et al., (2007) <doi: 10.1016/j.cmpb.2007.07.010> and Zhang et al., (2011) <doi: 10.1016/j.cmpb.2010.07.005> respectively to clustered right-censored data. The functions also provide the estimates of the cumulative baseline hazard along with their standard errors. Furthermore, the adjusted survival and cumulative incidence probabilities are also provided along with their standard errors. Finally, the estimate of cumulative incidence and survival probabilities given a vector of covariates along with their standard errors are also provided.
Addressing measurement error in covariates and misclassification in binary outcome variables within causal inference, the ATE.ERROR package implements inverse probability weighted estimation methods proposed by Shu and Yi (2017, <doi:10.1177/0962280217743777>; 2019, <doi:10.1002/sim.8073>). These methods correct errors to accurately estimate average treatment effects (ATE). The package includes two main functions: ATE.ERROR.Y() for handling misclassification in the outcome variable and ATE.ERROR.XY() for correcting both outcome misclassification and covariate measurement error. It employs logistic regression for treatment assignment and uses bootstrap sampling to calculate standard errors and confidence intervals, with simulated datasets provided for practical demonstration.
Consider autoregressive model of order p where the distribution function of innovation is unknown, but innovations are independent and symmetrically distributed. The package contains a function named ARMDE which takes X (vector of n observations) and p (order of the model) as input argument and returns minimum distance estimator of the parameters in the model.
This package provides a toolbox for programming Clinical Data Interchange Standards Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>).
Estimate the lower and upper bound of asymptomatic cases in an epidemic using the capture/recapture methods from Böhning et al. (2020) <doi:10.1016/j.ijid.2020.06.009> and Rocchetti et al. (2020) <doi:10.1101/2020.07.14.20153445>. Note there is currently some discussion about the validity of the methods implemented in this package. You should read carefully the original articles, alongside this answer from Li et al. (2022) <doi:10.48550/arXiv.2209.11334> before using this package in your project.
This package implements Bayesian estimation and inference for alpha-mixture survival models, including Weibull and Exponential based components, with tools for simulation and posterior summaries. The methods target applications in reliability and biomedical survival analysis. The package implements Bayesian estimation for the alpha-mixture methodology introduced in Asadi et al. (2019) <doi:10.1017/jpr.2019.72>.
This package provides a varied array of mathematical derivations from various titrimetric and colorimetric methods for analyzing water quality parameters were condensed and integrated for the better physicochemical analysis. It is indispensable for managing any aquatic ecosystem, including aquaculture facilities. By substituting titrant and spectrophotometric absorbance readings, accurate determination of the concentrations of critical parameters such as Dissolved Oxygen, Free Carbon Dioxide, Total Alkalinity, Water Hardness, Hydrogen Sulfide, Total Ammonia Nitrogen, Nitrite, Nitrate, Chlorinity, Salinity, Inorganic Phosphate, and Transparency can be facilitated APHA(2017,ISBN:9780875532875).
Which day a week starts depends heavily on the either the local or professional context. This package is designed to be a lightweight solution to easily switching between week-based date definitions.
This package provides a free software for a fast and easy analysis of 1:1 molecular interaction studies. This package is suitable for a high-throughput data analysis. Both the online app and the package are completely open source. You provide a table of sensogram, tell anabel which method to use, and it takes care of all fitting details. The first two releases of anabel were created and implemented as in (<doi:10.1177/1177932218821383>, <doi:10.1093/database/baz101>).
The real-life time series data are hardly pure linear or nonlinear. Merging a linear time series model like the autoregressive moving average (ARMA) model with a nonlinear neural network model such as the Long Short-Term Memory (LSTM) model can be used as a hybrid model for more accurate modeling purposes. Both the autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) models can be implemented. Details can be found in Box et al. (2015, ISBN: 978-1-118-67502-1) and Hochreiter and Schmidhuber (1997) <doi:10.1162/neco.1997.9.8.1735>.
This package provides an interface to the algorithm selection benchmark library at <https://www.coseal.net/aslib/> and the LLAMA package (<https://cran.r-project.org/package=llama>) for building algorithm selection models; see Bischl et al. (2016) <doi:10.1016/j.artint.2016.04.003>.
This package provides tools to perform model selection alongside estimation under Linear, Logistic, Negative binomial, Quantile, and Skew-Normal regression. Under the spike-and-slab method, a probability for each possible model is estimated with the posterior mean, credibility interval, and standard deviation of coefficients and parameters under the most probable model.
This package provides tools for the quantitative analysis of axon integrity in microscopy images. It implements image pre-processing, adaptive thresholding, feature extraction, and support vector machine-based classification to compute indices such as the Axon Integrity Index (AII) and Degeneration Index (DI). The package is designed for reproducible and automated analysis in neuroscience research.
Flexible parametric Accelerated Hazards (AH) regression models in overall and relative survival frameworks with 13 distinct Baseline Distributions. The AH Model can also be applied to lifetime data with crossed survival curves. Any user-defined parametric distribution can be fitted, given at least an R function defining the cumulative hazard and hazard rate functions. See Chen and Wang (2000) <doi:10.1080/01621459.2000.10474236>, and Lee (2015) <doi:10.1007/s10985-015-9349-5> for more details.
Some convenient functions to work with arrays.
Offers a graphical user interface for the calculation of the mean measure of divergence, with facilities for trait selection and graphical representations <doi:10.1002/ajpa.23336>.
We propose an age-dependent topic modelling (ATM) model, providing a low-rank representation of longitudinal records of hundreds of distinct diseases in large electronic health record data sets. The model assigns to each individual topic weights for several disease topics; each disease topic reflects a set of diseases that tend to co-occur as a function of age, quantified by age-dependent topic loadings for each disease. The model assumes that for each disease diagnosis, a topic is sampled based on the individualâ s topic weights (which sum to 1 across topics, for a given individual), and a disease is sampled based on the individualâ s age and the age-dependent topic loadings (which sum to 1 across diseases, for a given topic at a given age). The model generalises the Latent Dirichlet Allocation (LDA) model by allowing topic loadings for each topic to vary with age. References: Jiang (2023) <doi:10.1038/s41588-023-01522-8>.
Implementation of the augmented Simulation-Extrapolation (SIMEX) algorithm proposed by Yi et al. (2015) <doi:10.1080/01621459.2014.922777> for analyzing the data with mixed measurement error and misclassification. The main function provides a similar summary output as that of glm() function. Both parametric and empirical SIMEX are considered in the package.