Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements an S3 class for storing and formatting time-of-day values, based on the difftime class.
This package contain data sets and utilities from Project MOSAIC used to teach mathematics, statistics, computation and modeling. Project MOSAIC is a community of educators working to tie together aspects of quantitative work that students in science, technology, engineering and mathematics will need in their professional lives, but which are usually taught in isolation, if at all.
This package provides an implementation of bee swarm plots. The bee swarm plot is a one-dimensional scatter plot like stripchart, but with closely-packed, non-overlapping points.
This package provides a set of predicates and assertions for checking the properties of code. This is mainly for use by other package developers who want to include run-time testing features in their own packages.
Biterm Topic Models find topics in collections of short texts. It is a word co-occurrence based topic model that learns topics by modeling word-word co-occurrences patterns which are called biterms. This in contrast to traditional topic models like Latent Dirichlet Allocation and Probabilistic Latent Semantic Analysis which are word-document co-occurrence topic models. A biterm consists of two words co-occurring in the same short text window. This context window can for example be a twitter message, a short answer on a survey, a sentence of a text or a document identifier. The techniques are explained in detail in the paper 'A Biterm Topic Model For Short Text' by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, Xueqi Cheng (2013) https://github.com/xiaohuiyan/xiaohuiyan.github.io/blob/master/paper/BTM-WWW13.pdf.
This package provides lots of predicates (is_* functions) to check the state of your variables, and assertions (assert_* functions) to throw errors if they aren't in the right form.
This package provides functions for importing and handling text files and formatted text files with additional meta-data, such including .csv, .tab, .json, .xml, .html, .pdf, .doc, .docx, .rtf, .xls, .xlsx, and others.
Suppose we have data that has so many series that it is hard to identify them by their colors as the differences are so subtle. With gghighlight we can highlight those lines that match certain criteria. The result is a usual ggplot object, so it is fully customizable and can be used with custom themes and facets.
This package implements an empirical Bayes approach for large-scale hypothesis testing and false discovery rate estimation.
This package contains functions to perform Bayesian inference using posterior simulation for a number of statistical models. Most simulation is done in compiled C++ written in the Scythe Statistical Library. All models return coda mcmc objects that can then be summarized using the coda package. Some useful utility functions such as density functions, pseudo-random number generators for statistical distributions, a general purpose Metropolis sampling algorithm, and tools for visualization are provided.
This package provides functions to convert R objects into JSON objects and vice-versa.
This package represents an implementation of functions to optimize ordering of nodes in a dendrogram, without affecting the meaning of the dendrogram. A dendrogram can be sorted based on the average distance of subtrees, or based on the smallest distance value. These sorting methods improve readability and interpretability of tree structure, especially for tasks such as comparison of different distance measures or linkage types and identification of tight clusters and outliers. As a result, it also introduces more meaningful reordering for a coupled heatmap visualization.
This package provides a set of psychometric tools for cognitive diagnosis modeling based on the generalized deterministic inputs, noisy and gate (G-DINA) model by de la Torre (2011) doi:10.1007/s11336-011-9207-7 and its extensions, including the sequential G-DINA model by Ma and de la Torre (2016) doi:10.1111/bmsp.12070 for polytomous responses, and the polytomous G-DINA model by Chen and de la Torre doi:10.1177/0146621613479818 for polytomous attributes. Joint attribute distribution can be independent, saturated, higher-order, loglinear smoothed or structured. Q-matrix validation, item and model fit statistics, model comparison at test and item level and differential item functioning can also be conducted. A graphical user interface is also provided.
This package is a compatibility wrapper to replace the orphaned package by Romain Francois. New applications should use the openssl or base64enc package instead.
Streaming JSON (ndjson) has one JSON record per-line and many modern ndjson files contain large numbers of records. These constructs may not be columnar in nature, but it is often useful to read in these files and "flatten" the structure out to enable working with the data in an R data.frame-like context. Functions are provided that make it possible to read in plain ndjson files or compressed (gz) ndjson files and either validate the format of the records or create "flat" data.table structures from them.
This package provides density, distribution, quantile and hazard functions of a stable variate, as well as generalized regression models for the parameters of a stable distribution.
This package provides a collection of functions to help in the analysis of right-censored survival data. These extend the methods available in the survival package.
Recipes is an extensible framework to create and preprocess design matrices. Recipes consist of one or more data manipulation and analysis "steps". Statistical parameters for the steps can be estimated from an initial data set and then applied to other data sets. The resulting design matrices can then be used as inputs into statistical or machine learning models.
The C++ header files of the Stan project are provided by this package. There is a shared object containing part of the CVODES library, but it is not accessible from R. r-stanheaders is only useful for developers who want to utilize the LinkingTo directive of their package's DESCRIPTION file to build on the Stan library without incurring unnecessary dependencies.
The Stan project develops a probabilistic programming language that implements full or approximate Bayesian statistical inference via Markov Chain Monte Carlo or variational methods and implements (optionally penalized) maximum likelihood estimation via optimization. The Stan library includes an advanced automatic differentiation scheme, templated statistical and linear algebra functions that can handle the automatically differentiable scalar types (and doubles, ints, etc.), and a parser for the Stan language. The r-rstan package provides user-facing R functions to parse, compile, test, estimate, and analyze Stan models.
This package provides tools for fitting linear models and generalized linear models to large data sets by updating algorithms.
This package offers quick statistical hypothesis testing for matrix rows/columns. The main goals are speed through vectorization, detailed and user-friendly output, and compatibility with tests implemented in R.
This package extends the ggplot2 plotting system to support network visualization. Inspired by ggtree, ggtangle is designed to work with network associated data.
The grammar of graphics as implemented in ggplot2 is a poor fit for graph and network visualizations due to its reliance on tabular data input. The ggraph package is an extension of the ggplot2 API tailored to graph visualizations and provides the same flexible approach to building up plots layer by layer.
Inspired by the the futile.logger R package and logging Python module, this utility provides a flexible and extensible way of formatting and delivering log messages with low overhead.