Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a fast negative binomial mixed model for conducting association analysis of multi-subject single-cell data. It can be used for identifying marker genes, differential expression and co-expression analyses. The model includes subject-level random effects to account for the hierarchical structure in multi-subject single-cell data. See He et al. (2021) <doi:10.1038/s42003-021-02146-6>.
Density, distribution function, quantile function and random generation for the Nakagami distribution of Nakagami (1960) <doi:10.1016/B978-0-08-009306-2.50005-4>.
Calculation of molecular number and brightness from fluorescence microscopy image series. The software was published in a 2016 paper <doi:10.1093/bioinformatics/btx434>. The seminal paper for the technique is Digman et al. 2008 <doi:10.1529/biophysj.107.114645>. A review of the technique was published in 2017 <doi:10.1016/j.ymeth.2017.12.001>.
Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arXiv:1907.10176>.
Next-Generation Clustered Heat Maps (NG-CHMs) allow for dynamic exploration of heat map data in a web browser. NGCHM allows users to create both stand-alone HTML files containing a Next-Generation Clustered Heat Map, and .ngchm files to view in the NG-CHM viewer. See Ryan MC, Stucky M, et al (2020) <doi:10.12688/f1000research.20590.2> for more details.
This package provides a collection of datasets related to neutrosophic sets for statistical modeling and analysis.
Free United Kingdom National Health Service (NHS) and other healthcare, or population health-related data for education and training purposes. This package contains synthetic data based on real healthcare datasets, or cuts of open-licenced official data. This package exists to support skills development in the NHS-R community: <https://nhsrcommunity.com/>.
This package provides tools for traversing and working with National Hydrography Dataset Plus (NHDPlus) data. All methods implemented in nhdplusTools are available in the NHDPlus documentation available from the US Environmental Protection Agency <https://www.epa.gov/waterdata/basic-information>.
This package provides a reproducible workflow for binning and visualizing NMR (nuclear magnetic resonance) spectra from environmental samples. The nmrrr package is intended for post-processing of NMR data, including importing, merging and, cleaning data from multiple files, visualizing NMR spectra, performing binning/integrations for compound classes, and relative abundance calculations. This package can be easily inserted into existing analysis workflows by users to help with analyzing and interpreting NMR data.
Analysis of multivariate data with two-way completely randomized factorial design. The analysis is based on fully nonparametric, rank-based methods and uses test statistics based on the Dempster's ANOVA, Wilk's Lambda, Lawley-Hotelling and Bartlett-Nanda-Pillai criteria. The multivariate response is allowed to be ordinal, quantitative, binary or a mixture of the different variable types. The package offers two functions performing the analysis, one for small and the other for large sample sizes. The underlying methodology is largely described in Bathke and Harrar (2016) <doi:10.1007/978-3-319-39065-9_7> and in Munzel and Brunner (2000) <doi:10.1016/S0378-3758(99)00212-8> and in Kiefel and Bathke (2022) <doi:10.1515/stat-2022-0112>.
In this implementation of the Naive Bayes classifier following class conditional distributions are available: Bernoulli', Categorical', Gaussian', Poisson', Multinomial and non-parametric representation of the class conditional density estimated via Kernel Density Estimation. Implemented classifiers handle missing data and can take advantage of sparse data.
Nonparametric tests for clustered data in pre-post intervention design documented in Cui and Harrar (2021) <doi:10.1002/bimj.201900310> and Harrar and Cui (2022) <doi:10.1016/j.jspi.2022.05.009>. Other than the main test results mentioned in the reference paper, this package also provides a function to calculate the sample size allocations for the input long format data set, and also a function for adjusted/unadjusted confidence intervals calculations. There are also functions to visualize the distribution of data across different intervention groups over time, and also the adjusted/unadjusted confidence intervals.
An R wrapper for pulling data from the National Public Transport Access Nodes ('NaPTAN') API (<https://www.api.gov.uk/dft/national-public-transport-access-nodes-naptan-api/#national-public-transport-access-nodes-naptan-api>). This allows users to download NaPTAN transport information, for the full dataset, by ATCO region code, or by name of region.
Implementation of the two error variance estimation methods in high-dimensional linear models of Yu, Bien (2017) <arXiv:1712.02412>.
This package provides a collection of utilities referred to Exponential Power distribution, also known as General Error Distribution (see Mineo, A.M. and Ruggieri, M. (2005), A software Tool for the Exponential Power Distribution: The normalp package. In Journal of Statistical Software, Vol. 12, Issue 4).
Stochastic collapsed variational inference on mixed-membership stochastic blockmodel for networks, incorporating node-level predictors of mixed-membership vectors, as well as dyad-level predictors. For networks observed over time, the model defines a hidden Markov process that allows the effects of node-level predictors to evolve in discrete, historical periods. In addition, the package offers a variety of utilities for exploring results of estimation, including tools for conducting posterior predictive checks of goodness-of-fit and several plotting functions. The package implements methods described in Olivella, Pratt and Imai (2019) Dynamic Stochastic Blockmodel Regression for Social Networks: Application to International Conflicts', available at <https://www.santiagoolivella.info/pdfs/socnet.pdf>.
This package performs a Necessary Condition Analysis (NCA). (Dul, J. 2016. Necessary Condition Analysis (NCA). Logic and Methodology of Necessary but not Sufficient causality." Organizational Research Methods 19(1), 10-52) <doi:10.1177/1094428115584005>. NCA identifies necessary (but not sufficient) conditions in datasets, where x causes (e.g. precedes) y. Instead of drawing a regression line through the middle of the data in an xy-plot, NCA draws the ceiling line. The ceiling line y = f(x) separates the area with observations from the area without observations. (Nearly) all observations are below the ceiling line: y <= f(x). The empty zone is in the upper left hand corner of the xy-plot (with the convention that the x-axis is horizontal and the y-axis is vertical and that values increase upwards and to the right''). The ceiling line is a (piecewise) linear non-decreasing line: a linear step function or a straight line. It indicates which level of x (e.g. an effort or input) is necessary but not sufficient for a (desired) level of y (e.g. good performance or output). A quick start guide for using this package can be found here: <https://repub.eur.nl/pub/78323/> or <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2624981>.
Retrieve and plot word frequencies through time from the "Google Ngram Viewer" <https://books.google.com/ngrams>.
Fits regularization paths for linear regression, GLM, and Cox regression models using lasso or nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty, with options for additional L2 penalties (the "elastic net" idea). Utilities for carrying out cross-validation as well as post-fitting visualization, summarization, inference, and prediction are also provided. For more information, see Breheny and Huang (2011) <doi:10.1214/10-AOAS388> or visit the ncvreg homepage <https://pbreheny.github.io/ncvreg/>.
This package provides tools for 4D nucleome imaging. Quantitative analysis of the 3D nuclear landscape recorded with super-resolved fluorescence microscopy. See Volker J. Schmid, Marion Cremer, Thomas Cremer (2017) <doi:10.1016/j.ymeth.2017.03.013>.
This package provides a simple function for easier package loading and auto-installation.
With this package, it is possible to compute nonparametric simultaneous confidence intervals for relative contrast effects in the unbalanced one way layout. Moreover, it computes simultaneous p-values. The simultaneous confidence intervals can be computed using multivariate normal distribution, multivariate t-distribution with a Satterthwaite Approximation of the degree of freedom or using multivariate range preserving transformations with Logit or Probit as transformation function. 2 sample comparisons can be performed with the same methods described above. There is no assumption on the underlying distribution function, only that the data have to be at least ordinal numbers. See Konietschke et al. (2015) <doi:10.18637/jss.v064.i09> for details.
Fits non-homogeneous Markov multistate models and misclassification-type hidden Markov models in continuous time to intermittently observed data. Implements the methods in Titman (2011) <doi:10.1111/j.1541-0420.2010.01550.x>. Uses direct numerical solution of the Kolmogorov forward equations to calculate the transition probabilities.
Simulation, estimation, prediction procedure, and model identification methods for nonlinear time series analysis, including threshold autoregressive models, Markov-switching models, convolutional functional autoregressive models, nonlinearity tests, Kalman filters and various sequential Monte Carlo methods. More examples and details about this package can be found in the book "Nonlinear Time Series Analysis" by Ruey S. Tsay and Rong Chen, John Wiley & Sons, 2018 (ISBN: 978-1-119-26407-1).