Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, supporting datasets with missing data. Factors are assumed to follow a stationary VAR process of order p. The estimation options follow advances in the econometric literature: either running the Kalman Filter and Smoother once with initial values from PCA - 2S estimation as in Doz, Giannone and Reichlin (2011) <doi:10.1016/j.jeconom.2011.02.012> - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) <doi:10.1162/REST_a_00225> - or using the adapted EM algorithm of Banbura and Modugno (2014) <doi:10.1002/jae.2306>, allowing arbitrary patterns of missing data. The implementation makes heavy use of the Armadillo C++ library and the collapse package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation and visualization of the model as well as forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002) <doi:10.1111/1468-0262.00273>.
This package provides programmatic access to the Dark Sky API <https://darksky.net/dev/docs>, which provides current or historical global weather conditions.
Diffusion Weighted Imaging (DWI) is a Magnetic Resonance Imaging modality, that measures diffusion of water in tissues like the human brain. The package contains R-functions to process diffusion-weighted data. The functionality includes diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), modeling for high angular resolution diffusion weighted imaging (HARDI) using Q-ball-reconstruction and tensor mixture models, several methods for structural adaptive smoothing including POAS and msPOAS, and a streamline fiber tracking for tensor and tensor mixture models. The package provides functionality to manipulate and visualize results in 2D and 3D.
The Data Driven I-V Feature Extraction is used to extract Current-Voltage (I-V) features from I-V curves. I-V curves indicate the relationship between current and voltage for a solar cell or Photovoltaic (PV) modules. The I-V features such as maximum power point (Pmp), shunt resistance (Rsh), series resistance (Rs),short circuit current (Isc), open circuit voltage (Voc), fill factor (FF), current at maximum power (Imp) and voltage at maximum power(Vmp) contain important information of the performance for PV modules. The traditional method uses the single diode model to model I-V curves and extract I-V features. This package does not use the diode model, but uses data-driven a method which select different linear parts of the I-V curves to extract I-V features. This method also uses a sampling method to calculate uncertainties when extracting I-V features. Also, because of the partially shaded array, "steps" occurs in I-V curves. The "Segmented Regression" method is used to identify steps in I-V curves. This material is based upon work supported by the U.S. Department of Energyâ s Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Agreement Number DE-EE0007140. Further information can be found in the following paper. [1] Ma, X. et al, 2019. <doi:10.1109/JPHOTOV.2019.2928477>.
Flexible and efficient cleaning of data with interactivity. datacleanr facilitates best practices in data analyses and reproducibility with built-in features and by translating interactive/manual operations to code. The package is designed for interoperability, and so seamlessly fits into reproducible analyses pipelines in R'.
Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDAKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFDA). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.
It generates summary statistics on the input dataset using different descriptive univariate statistical measures on entire data or at a group level. Though there are other packages which does similar job but each of these are deficient in one form or other, in the measures generated, in treating numeric, character and date variables alike, no functionality to view these measures on a group level or the way the output is represented. Given the foremost role of the descriptive statistics in any of the exploratory data analysis or solution development, there is a need for a more constructive, structured and refined version over these packages. This is the idea behind the package and it brings together all the required descriptive measures to give an initial understanding of the data quality, distribution in a faster,easier and elaborative way.The function brings an additional capability to be able to generate these statistical measures on the entire dataset or at a group level. It calculates measures of central tendency (mean, median), distribution (count, proportion), dispersion (min, max, quantile, standard deviation, variance) and shape (skewness, kurtosis). Addition to these measures, it provides information on the data type, count on no. of rows, unique entries and percentage of missing entries. More importantly the measures are generated based on the data types as required by them,rather than applying numerical measures on character and data variables and vice versa. Output as a dataframe object gives a very neat representation, which often is useful when working with a large number of columns. It can easily be exported as csv and analyzed further or presented as a summary report for the data.
Transform newswire and earnings call transcripts as PDF obtained from Nexis Uni to R data frames. Various newswires and FairDisclosure earnings call formats are supported. Further, users can apply several pre-defined dictionaries on the data based on Graffin et al. (2016)<doi:10.5465/amj.2013.0288> and Gamache et al. (2015)<doi:10.5465/amj.2013.0377>.
Formatting of population and case data, calculation of Standardized Incidence Ratios, and fitting the BYM model using INLA'. For details see Brown (2015) <doi:10.18637/jss.v063.i12>.
Access Datastream content through <https://product.datastream.com/dswsclient/Docs/Default.aspx>., our historical financial database with over 35 million individual instruments or indicators across all major asset classes, including over 19 million active economic indicators. It features 120 years of data, across 175 countries â the information you need to interpret market trends, economic cycles, and the impact of world events. Data spans bond indices, bonds, commodities, convertibles, credit default swaps, derivatives, economics, energy, equities, equity indices, ESG, estimates, exchange rates, fixed income, funds, fundamentals, interest rates, and investment trusts. Unique content includes I/B/E/S Estimates, Worldscope Fundamentals, point-in-time data, and Reuters Polls. Alongside the content, sit a set of powerful analytical tools for exploring relationships between different asset types, with a library of customizable analytical functions. In-house timeseries can also be uploaded using the package to comingle with Datastream maintained datasets, use with these analytical tools and displayed in Datastreamâ s flexible charting facilities in Microsoft Office.
Allows to simulate SNP data using genlight objects. For example, it is straight forward to simulate a simple drift scenario with exchange of individuals between two populations or create a new genlight object based on allele frequencies of an existing genlight object.
Automatic differentiation is achieved by using dual numbers without providing hand-coded gradient functions. The output value of a mathematical function is returned with the values of its exact first derivative (or gradient). For more details see Baydin, Pearlmutter, Radul, and Siskind (2018) <https://jmlr.org/papers/volume18/17-468/17-468.pdf>.
Set of functions for Data Envelopment Analysis, including classical, fuzzy, cross-efficiency, bootstrapping, and Malmquist models. See: Banker, R.; Charnes, A.; Cooper, W.W. (1984). <doi:10.1287/mnsc.30.9.1078>, Charnes, A.; Cooper, W.W.; Rhodes, E. (1978). <doi:10.1016/0377-2217(78)90138-8> and Charnes, A.; Cooper, W.W.; Rhodes, E. (1981). <doi:10.1287/mnsc.27.6.668>.
Estimation of the average treatment effect when controlling for high-dimensional confounders using debiased inverse propensity score weighting (DIPW). DIPW relies on the propensity score following a sparse logistic regression model, but the regression curves are not required to be estimable. Despite this, our package also allows the users to estimate the regression curves and take the estimated curves as input to our methods. Details of the methodology can be found in Yuhao Wang and Rajen D. Shah (2020) "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders" <arXiv:2011.08661>. The package relies on the optimisation software MOSEK <https://www.mosek.com/> which must be installed separately; see the documentation for Rmosek'.
In tumor tissue, underlying genomic instability can lead to DNA copy number alterations, e.g., copy number gains or losses. Sporadic copy number alterations occur randomly throughout the genome, whereas recurrent alterations are observed in the same genomic region across multiple independent samples, perhaps because they provide a selective growth advantage. Here we use cyclic shift permutations to identify recurrent copy number alterations in a single cohort or recurrent copy number differences in two cohorts based on a common set of genomic markers. Additional functionality is provided to perform downstream analyses, including the creation of summary files and graphics. DiNAMIC.Duo builds upon the original DiNAMIC package of Walter et al. (2011) <doi:10.1093/bioinformatics/btq717> and leverages the theory developed in Walter et al. (2015) <doi:10.1093/biomet/asv046>. An article describing DiNAMIC.Duo by Walter et al. (2022) can be found at <doi: 10.1093/bioinformatics/btac542>.
Efficiently create dummies of all factors and character vectors in a data frame. Support is included for learning the categories on one data set (e.g., a training set) and deploying them on another (e.g., a test set).
The D-score summarizes a child's performance on developmental milestones into a single number. Its key feature is its generic nature. The method does not depend on a specific measurement instrument. The statistical method underlying the D-score is described in van Buuren et al. (2025) <doi:10.1177/01650254241294033>. This package implements model keys to convert milestone scores to D-scores; maps instrument-specific item names to a generic 9-position naming convention; computes D-scores and their precision from a child's milestone scores; and converts D-scores to Development-for-Age Z-scores (DAZ) using age-conditional reference standards.
Implementation of three methods based on the diversity forest (DF) algorithm (Hornung, 2022, <doi:10.1007/s42979-021-00920-1>), a split-finding approach that enables complex split procedures in random forests. The package includes: 1. Interaction forests (IFs) (Hornung & Boulesteix, 2022, <doi:10.1016/j.csda.2022.107460>): Model quantitative and qualitative interaction effects using bivariable splitting. Come with the Effect Importance Measure (EIM), which can be used to identify variable pairs that have well-interpretable quantitative and qualitative interaction effects with high predictive relevance. 2. Two random forest-based variable importance measures (VIMs) for multi-class outcomes: the class-focused VIM, which ranks covariates by their ability to distinguish individual outcome classes from the others, and the discriminatory VIM, which measures overall covariate influence irrespective of class-specific relevance. 3. The basic form of diversity forests that uses conventional univariable, binary splitting (Hornung, 2022). Except for the multi-class VIMs, all methods support categorical, metric, and survival outcomes. The package includes visualization tools for interpreting the identified covariate effects. Built as a fork of the ranger R package (main author: Marvin N. Wright), which implements random forests using an efficient C++ implementation.
Computational tools for meta-analysis of diagnostic accuracy test. Bootstrap-based computational methods of the confidence interval for AUC of summary ROC curve and some related AUC-based inference methods are available (Noma et al. (2021) <doi:10.1080/23737484.2021.1894408>).
The DYMO package provides tools for multi-feature time-series forecasting using a Dynamic Mode Decomposition (DMD) model combined with conformal predictive sampling for uncertainty quantification.
This package creates survey designs for distance sampling surveys. These designs can be assessed for various effort and coverage statistics. Once the user is satisfied with the design characteristics they can generate a set of transects to use in their distance sampling survey. Many of the designs implemented in this R package were first made available in our Distance for Windows software and are detailed in Chapter 7 of Advanced Distance Sampling, Buckland et. al. (2008, ISBN-13: 978-0199225873). Find out more about estimating animal/plant abundance with distance sampling at <https://distancesampling.org/>.
Simple computation of spatial statistic functions of distance to characterize the spatial structures of mapped objects, following Marcon, Traissac, Puech, and Lang (2015) <doi:10.18637/jss.v067.c03>. Includes classical functions (Ripley's K and others) and more recent ones used by spatial economists (Duranton and Overman's Kd, Marcon and Puech's M). Relies on spatstat for some core calculation.
Could be used to obtain spatial depths, spatial ranks and outliers of multivariate random variables. Could also be used to visualize DD-plots (a multivariate generalization of QQ-plots).
This package contains an implementation of the d-variable Hilbert Schmidt independence criterion and several hypothesis tests based on it, as described in Pfister et al. (2017) <doi:10.1111/rssb.12235>.