Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Compared with the similar graph embedding method such as Laplacian Eigenmaps, Vicus can exploit more local structures of graph data. For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/Vicus>.
R data pipelines commonly require reading and writing data to versioned directories. Each directory might correspond to one step of a multi-step process, where that version corresponds to particular settings for that step and a chain of previous steps that each have their own versions. This package creates a configuration object that makes it easy to read and write versioned data, based on YAML configuration files loaded and saved to each versioned folder.
New wavelet methodology (vector wavelet coherence) (Oygur, T., Unal, G, 2020 <doi:10.1007/s40435-020-00706-y>) to handle dynamic co-movements of multivariate time series via extending multiple and quadruple wavelet coherence methodologies. This package can be used to perform multiple wavelet coherence, quadruple wavelet coherence, and n-dimensional vector wavelet coherence analyses.
Under a different representation of the multivariate normal (MVN) probability, we can use the Vecchia approximation to sample the integrand at a linear complexity with respect to n. Additionally, both the SOV algorithm from Genz (92) and the exponential-tilting method from Botev (2017) can be adapted to linear complexity. The reference for the method implemented in this package is Jian Cao and Matthias Katzfuss (2024) "Linear-Cost Vecchia Approximation of Multivariate Normal Probabilities" <doi:10.48550/arXiv.2311.09426>. Two major references for the development of our method are Alan Genz (1992) "Numerical Computation of Multivariate Normal Probabilities" <doi:10.1080/10618600.1992.10477010> and Z. I. Botev (2017) "The Normal Law Under Linear Restrictions: Simulation and Estimation via Minimax Tilting" <doi:10.48550/arXiv.1603.04166>.
It provides a comprehensive toolkit for calculating a suite of common vegetation indices (VIs) derived from remote sensing imagery. VIs are essential tools used to quantify vegetation characteristics, such as biomass, leaf area index (LAI) and photosynthetic activity, which are essential parameters in various ecological, agricultural, and environmental studies. Applications of this package include biomass estimation, crop monitoring, forest management, land use and land cover change analysis and climate change studies. For method details see, Deb,D.,Deb,S.,Chakraborty,D.,Singh,J.P.,Singh,A.K.,Dutta,P.and Choudhury,A.(2020)<doi:10.1080/10106049.2020.1756461>. Utilizing this R package, users can effectively extract and analyze critical information from remote sensing imagery, enhancing their comprehension of vegetation dynamics and their importance in global ecosystems. The package includes the function vegetation_indices().
This package provides a port of Inspect', a widely adopted Python framework for large language model evaluation. Specifically aimed at ellmer users who want to measure the effectiveness of their large language model-based products, the package supports prompt engineering, tool usage, multi-turn dialog, and model graded evaluations.
This package provides tools for audio data analysis, including feature extraction, pitch detection, and speaker identification. Designed for voice research and signal processing applications.
If f <- function(x)x^2 and g <- function(x)x+1 it is a constant source of annoyance that "f+g" is not defined. Package vfunc allows you to do this, and we have (f+g)(2) returning 5. The other arithmetic operators are similarly implemented. A wide class of coding bugs is eliminated.
Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data and penalized estimating equations for generalized linear models with multiple imputation. Reference: Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized estimating equations for generalized linear models with multiple imputation", <doi:10.1214/22-AOAS1721>. Li, Y., Yang, H., Yu, H., Huang, H., Shen, Y*. (2023) "Penalized weighted least-squares estimate for variable selection on correlated multiply imputed data", <doi:10.1093/jrsssc/qlad028>.
An interface to the Valhalla routing engineâ s application programming interfaces (APIs) for turn-by-turn routing, isochrones, and origin-destination analyses. Also includes several user-friendly functions for plotting outputs, and strives to follow "tidy" design principles. Please note that this package requires access to a running instance of Valhalla', which is open source and can be downloaded from <https://github.com/valhalla/valhalla>.
This package provides tools for the statistical analysis of regular vine copula models, see Aas et al. (2009) <doi:10.1016/j.insmatheco.2007.02.001> and Dissman et al. (2013) <doi:10.1016/j.csda.2012.08.010>. The package includes tools for parameter estimation, model selection, simulation, goodness-of-fit tests, and visualization. Tools for estimation, selection and exploratory data analysis of bivariate copula models are also provided.
Data version management on the file system for smaller projects. Manage data pipeline outputs with symbolic folder links, structured logging and reports, using R6 classes for encapsulation and data.table for speed. Directory-specific logs used as source of truth to allow portability of versioned data folders.
Three steps variable selection procedure based on random forests. Initially developed to handle high dimensional data (for which number of variables largely exceeds number of observations), the package is very versatile and can treat most dimensions of data, for regression and supervised classification problems. First step is dedicated to eliminate irrelevant variables from the dataset. Second step aims to select all variables related to the response for interpretation purpose. Third step refines the selection by eliminating redundancy in the set of variables selected by the second step, for prediction purpose. Genuer, R. Poggi, J.-M. and Tuleau-Malot, C. (2015) <https://journal.r-project.org/articles/RJ-2015-018/>.
Computes the Gaussian variational approximation of the Bayesian empirical likelihood posterior. This is an implementation of the function found in Yu, W., & Bondell, H. D. (2023) <doi:10.1080/01621459.2023.2169701>.
Interactive adverse event (AE) volcano plot for monitoring clinical trial safety. This tool allows users to view the overall distribution of AEs in a clinical trial using standard (e.g. MedDRA preferred term) or custom (e.g. Gender) categories using a volcano plot similar to proposal by Zink et al. (2013) <doi:10.1177/1740774513485311>. This tool provides a stand-along shiny application and flexible shiny modules allowing this tool to be used as a part of more robust safety monitoring framework like the Shiny app from the safetyGraphics R package.
This package provides methods to calculate diagnostics for multicollinearity among predictors in a linear or generalized linear model. It also provides methods to visualize those diagnostics following Friendly & Kwan (2009), "Whereâ s Waldo: Visualizing Collinearity Diagnostics", <doi:10.1198/tast.2009.0012>. These include better tabular presentation of collinearity diagnostics that highlight the important numbers, a semi-graphic tableplot of the diagnostics to make warning and danger levels more salient, and a "collinearity biplot" of the smallest dimensions of predictor space, where collinearity is most apparent.
The "Vertical and Horizontal Inheritance Consistence Analysis" method is described in the following publication: "VHICA: a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila" by G. Wallau. et al. (2016) <DOI:10.1093/molbev/msv341>. The purpose of the method is to detect horizontal transfers of transposable elements, by contrasting the divergence of transposable element sequences with that of regular genes.
This package contains selected data from two publications, Campbell et al'. (2016) <DOI:10.1080/14486563.2015.1028486> and Pacioni et al'. (2017) <DOI:10.1071/PC17002>. The data is provided both as raw outputs from the population viability analysis software Vortex and packaged as R objects. The R package vortexR uses the raw data provided here to illustrate its functionality of parsing raw Vortex output into R objects.
Uses a Bayesian model to estimate the variability in a repeated measure outcome and use that as an outcome or a predictor in a second stage model.
Visualize the trends and historical downloads from packages in the CRAN repository. Data is obtained by using the API to query the database from the RStudio CRAN mirror.
This package provides the vcd2df function, which loads a IEEE 1364-1995/2001 VCD (.vcd) file, specified as a parameter of type string containing exactly a file path, and returns an R dataframe containing values over time. A VCD file captures the register values at discrete timepoints from a simulated trace of execution of a hardware design in Verilog or VHDL. The returned dataframe contains a row for each register, by name, and a column for each time point, specified VCD-style using octothorpe-prefixed multiples of the timescale as strings. The only non-trivial implementation details are that (1) VCD x and z non-numerical values are encoded as negative value -1 (as otherwise all bit values are positive) and (2) registers with repeated names in distinct modules are ignored, rather than duplicated, as we anticipate these registers to have the same values. Read more in arXiv preprint: vcd2df -- Leveraging Data Science Insights for Hardware Security Research <doi:10.48550/arXiv.2505.06470>.
This package provides functions for the mass-univariate voxelwise analysis of medical imaging data that follows the NIfTI <http://nifti.nimh.nih.gov> format.
To visualize the probabilities of early termination, fail and success of Simon's two-stage design. To evaluate and visualize the operating characteristics of Simon's two-stage design.
This package provides an interface to the VK API <https://vk.com/dev/methods>. VK <https://vk.com/> is the largest European online social networking service, based in Russia.