Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Adjusts longitudinal regression models using Bayesian methodology for covariance structures of composite symmetry (SC), autoregressive ones of order 1 AR (1) and autoregressive moving average of order (1,1) ARMA (1,1).
Bayesian power/type I error calculation and model fitting using the power prior and the normalized power prior for generalized linear models. Detailed examples of applying the package are available at <doi:10.32614/RJ-2023-016>. Models for time-to-event outcomes are implemented in the R package BayesPPDSurv'. The Bayesian clinical trial design methodology is described in Chen et al. (2011) <doi:10.1111/j.1541-0420.2011.01561.x>, and Psioda and Ibrahim (2019) <doi:10.1093/biostatistics/kxy009>. The normalized power prior is described in Duan et al. (2006) <doi:10.1002/env.752> and Ibrahim et al. (2015) <doi:10.1002/sim.6728>.
Collection of utilities that improve using Databricks from R. Primarily functions that wrap specific Databricks APIs (<https://docs.databricks.com/api>), RStudio connection pane support, quality of life functions to make Databricks simpler to use.
Unified and user-friendly framework for using new distributional representations of biosensors data in different statistical modeling tasks: regression models, hypothesis testing, cluster analysis, visualization, and descriptive analysis. Distributional representations are a functional extension of compositional time-range metrics and we have used them successfully so far in modeling glucose profiles and accelerometer data. However, these functional representations can be used to represent any biosensor data such as ECG or medical imaging such as fMRI. Matabuena M, Petersen A, Vidal JC, Gude F. "Glucodensities: A new representation of glucose profiles using distributional data analysis" (2021) <doi:10.1177/0962280221998064>.
This package contains specialised analyses and visualisation tools for behavior change science. These facilitate conducting determinant studies (for example, using confidence interval-based estimation of relevance, CIBER, or CIBERlite plots, see Crutzen, Noijen & Peters (2017) <doi:10/ghtfz9>), systematically developing, reporting, and analysing interventions (for example, using Acyclic Behavior Change Diagrams), and reporting about intervention effectiveness (for example, using the Numbers Needed for Change, see Gruijters & Peters (2017) <doi:10/jzkt>), and computing the required sample size (using the Meaningful Change Definition, see Gruijters & Peters (2020) <doi:10/ghpnx8>). This package is especially useful for researchers in the field of behavior change or health psychology and to behavior change professionals such as intervention developers and prevention workers.
Bayesian adaptive randomization is also called outcome adaptive randomization, which is increasingly used in clinical trials.
This package provides tools for fitting Bayesian single index models with flexible choices of priors for both the index and the link function. The package implements model estimation and posterior inference using efficient MCMC algorithms built on the nimble framework, allowing users to specify, extend, and simulate models in a unified and reproducible manner. The following methods are implemented in the package: Antoniadis et al. (2004) <https://www.jstor.org/stable/24307224>, Wang (2009) <doi:10.1016/j.csda.2008.12.010>, Choi et al. (2011) <doi:10.1080/10485251003768019>, Dhara et al. (2019) <doi:10.1214/19-BA1170>, McGee et al. (2023) <doi:10.1111/biom.13569>.
Allows users to easily visualize data from the BLS (United States of America Bureau of Labor Statistics) <https://www.bls.gov>. Currently unemployment data series U1-U6 are available. Not affiliated with the Bureau of Labor Statistics or United States Government.
This package contains several plotting functions such as barplots, scatterplots, heatmaps, as well as functions to combine plots and assist in the creation of these plots. These functions will give users great ease of use and customization options in broad use for biomedical applications, as well as general purpose plotting. Each of the functions also provides valid default settings to make plotting data more efficient and producing high quality plots with standard colour schemes simpler. All functions within this package are capable of producing plots that are of the quality to be presented in scientific publications and journals. P'ng et al.; BPG: Seamless, automated and interactive visualization of scientific data; BMC Bioinformatics 2019 <doi:10.1186/s12859-019-2610-2>.
We use a Bayesian approach to run individual patient data meta-analysis and network meta-analysis using JAGS'. The methods incorporate shrinkage methods and calculate patient-specific treatment effects as described in Seo et al. (2021) <DOI:10.1002/sim.8859>. This package also includes user-friendly functions that impute missing data in an individual patient data using mice-related packages.
Density, distribution, quantile function, random number generation for the BMT (Bezier-Montenegro-Torres) distribution. Torres-Jimenez C.J. and Montenegro-Diaz A.M. (2017) <doi:10.48550/arXiv.1709.05534>. Moments, descriptive measures and parameter conversion for different parameterizations of the BMT distribution. Fit of the BMT distribution to non-censored data by maximum likelihood, moment matching, quantile matching, maximum goodness-of-fit, also known as minimum distance, maximum product of spacing, also called maximum spacing, and minimum quantile distance, which can also be called maximum quantile goodness-of-fit. Fit of univariate distributions for non-censored data using maximum product of spacing estimation and minimum quantile distance estimation is also included.
This package provides functions to compute the joint probability mass function (pmf), cumulative distribution function (cdf), and survival function (sf) of the Basu-Dhar bivariate geometric distribution. Additional functionalities include the calculation of the correlation coefficient, covariance, and cross-factorial moments, as well as the generation of random variates. The package also implements parameter estimation based on the method of moments.
This package implements a bootstrap aggregated (bagged) version of the k-nearest neighbors survival probability prediction method (Lowsky et al. 2013). In addition to the bootstrapping of training samples, the features can be subsampled in each baselearner to break the correlation between them. The Rcpp package is used to speed up the computation.
Handy frameworks, such as error handling and log generation, for batch scripts. Use case: in scripts running in remote servers, set error handling mechanism for downloading and uploading and record operation log.
This package provides a selection of distances measures for bioinformatics data. Other important distance measures for bioinformatics data are selected from the R package parallelDist'. A special distance measure for the Gene Ontology is available.
Bootstrap methods to assess accuracy and stability of estimated network structures and centrality indices <doi:10.3758/s13428-017-0862-1>. Allows for flexible specification of any undirected network estimation procedure in R, and offers default sets for various estimation routines.
Boldness-recalibration maximally spreads out probability predictions while maintaining a user specified level of calibration, facilitated the brcal() function. Supporting functions to assess calibration via Bayesian and Frequentist approaches, Maximum Likelihood Estimator (MLE) recalibration, Linear in Log Odds (LLO)-adjust via any specified parameters, and visualize results are also provided. Methodological details can be found in Guthrie & Franck (2024) <doi:10.1080/00031305.2024.2339266>.
Generates robust confidence intervals for standardized regression coefficients using heteroskedasticity-consistent standard errors for models fitted by lm() as described in Dudgeon (2017) <doi:10.1007/s11336-017-9563-z>. The package can also be used to generate confidence intervals for R-squared, adjusted R-squared, and differences of standardized regression coefficients. A description of the package and code examples are presented in Pesigan, Sun, and Cheung (2023) <doi:10.1080/00273171.2023.2201277>.
Toolkit for Bayesian estimation of the dependence structure in multivariate extreme value parametric models, following Sabourin and Naveau (2014) <doi:10.1016/j.csda.2013.04.021> and Sabourin, Naveau and Fougeres (2013) <doi:10.1007/s10687-012-0163-0>.
Geographically referenced data and statistics of nighttime lights from NASA Black Marble <https://blackmarble.gsfc.nasa.gov/>.
Bayesian MCPMod (Fleischer et al. (2022) <doi:10.1002/pst.2193>) is an innovative method that improves the traditional MCPMod by systematically incorporating historical data, such as previous placebo group data. This R package offers functions for simulating, analyzing, and evaluating Bayesian MCPMod trials with normally distributed endpoints. It enables the assessment of trial designs incorporating historical data across various true dose-response relationships and sample sizes. Robust mixture prior distributions, such as those derived with the Meta-Analytic-Predictive approach (Schmidli et al. (2014) <doi:10.1111/biom.12242>), can be specified for each dose group. Resulting mixture posterior distributions are used in the Bayesian Multiple Comparison Procedure and modeling steps. The modeling step also includes a weighted model averaging approach (Pinheiro et al. (2014) <doi:10.1002/sim.6052>). Estimated dose-response relationships can be bootstrapped and visualized.
The Bayesian Federated Inference ('BFI') method combines inference results obtained from local data sets in the separate centers. In this version of the package, the BFI methodology is programmed for linear, logistic and survival regression models. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for survival models, see Pazira, Massa, Weijers, Coolen and Jonker (2025) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous populations, see Jonker, Pazira and Coolen (2025) <doi:10.1017/rsm.2025.6>.
Computation of bootstrap confidence intervals in an almost automatic fashion as described in Efron and Narasimhan (2020, <doi:10.1080/10618600.2020.1714633>).
Arrays of structured data types can require large volumes of disk space to store. Blosc is a library that provides a fast and efficient way to compress such data. It is often applied in storage of n-dimensional arrays, such as in the case of the geo-spatial zarr file format. This package can be used to compress and decompress data using Blosc'.