Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Ray Shooting Depth functions are provided for bivariate analysis. This mainly includes functions for computing the bivariate depth as well as RS median. Drawing functions for depth bags are also provided.
This package provides functions for assessing variable relations and associations prior to modeling with a Random Forest algorithm (although these are relevant for any predictive model). Metrics such as partial correlations and variance inflation factors are tabulated as well as plotted for the user. A function is available for tuning the main Random Forest hyper-parameter based on model performance and variable importance metrics. This grid-search technique provides tables and plots showing the effect of the main hyper-parameter on each of the assessment metrics. It also returns each of the evaluated models to the user. The package also provides superior variable importance plots for individual models. All of the plots are developed so that the user has the ability to edit and improve further upon the plots. Derivations and methodology are described in Bladen (2022) <https://digitalcommons.usu.edu/etd/8587/>.
This package provides a convenient way of accessing data published by the Reserve Bank of New Zealand (RBNZ) on their website, <https://www.rbnz.govt.nz/statistics>. A range of financial and economic data is provided in spreadsheet format including exchange and interest rates, commercial lending statistics, Reserve Bank market operations, financial institution statistics, household financial data, New Zealand debt security information, and economic indicators. This package provides a method to download those spreadsheets and read them directly into R.
These tools implement in R a fundamental part of the software PACTA (Paris Agreement Capital Transition Assessment), which is a free tool that calculates the alignment between financial portfolios and climate scenarios (<https://www.transitionmonitor.com/>). Financial institutions use PACTA to study how their capital allocation decisions align with climate change mitigation goals. This package matches data from corporate lending portfolios to asset level data from market-intelligence databases (e.g. power plant capacities, emission factors, etc.). This is the first step to assess if a financial portfolio aligns with climate goals.
Multiple interactive codes to view and analyze seismic data, via spectrum analysis, wavelet transforms, particle motion, hodograms. Includes general time-series tools, plotting, filtering, interactive display.
The concept of reliable and clinically significant change (Jacobson & Truax, 1991) helps you answer the following questions for a sample with two measurements at different points in time (pre & post): Which proportion of my sample has a (considering the reliability of the instrument) probably not-just-by-chance difference in pre- vs. post-scores? Which proportion of my sample does not only change in a statistically significant way (see question one), but also in a clinically significant way (e.g. change from a test score regarded "dysfunctional" to a score regarded "functional")? This package allows you to very easily create a scatterplot of your sample in which the x-axis maps to the pre-scores, the y-axis maps to the post-scores and several graphical elements (lines, colors) allow you to gain a quick overview about reliable changes in these scores. An example of this kind of plot is Figure 2 of Jacobson & Truax (1991). Referenced article: Jacobson, N. S., & Truax, P. (1991) <doi:10.1037/0022-006X.59.1.12>.
Predicts morphological parameters of rorquals (e.g. body mass, flipper length, maximum engulfment capacity) from body length using allometric equations from Kahane-Rapport and Goldbogen (2018) <doi:10.1002/jmor.20846>.
This package provides an interface to access data from the International Union for Conservation of Nature (IUCN) Red List <https://api.iucnredlist.org/api-docs/index.html>. It allows users to retrieve up-to-date information on species conservation status, supporting biodiversity research and conservation efforts.
Import data written in the JCAMP-DX format. This is an instrument-independent format used in the field of spectroscopy. Examples include IR, NMR, and Raman spectroscopy. See the vignette for background and supported formats. The official JCAMP-DX site is <http://www.jcamp-dx.org/>.
Traditional latent variable models assume that the population is homogeneous, meaning that all individuals in the population are assumed to have the same latent structure. However, this assumption is often violated in practice given that individuals may differ in their age, gender, socioeconomic status, and other factors that can affect their latent structure. The robust expectation maximization (REM) algorithm is a statistical method for estimating the parameters of a latent variable model in the presence of population heterogeneity as recommended by Nieser & Cochran (2023) <doi:10.1037/met0000413>. The REM algorithm is based on the expectation-maximization (EM) algorithm, but it allows for the case when all the data are generated by the assumed data generating model.
Allows work with Management API for load counters, segments, filters, user permissions and goals list from Yandex Metrica, Reporting API allows you to get information about the statistics of site visits and other data without using the web interface, Logs API allows to receive non-aggregated data and Compatible with Google Analytics Core Reporting API v3 allows receive information about site traffic and other data using field names from Google Analytics Core API. For more information see official documents <https://yandex.ru/dev/metrika/doc/api2/concept/about-docpage>.
Accurate prediction of subject recruitment for Randomized Clinical Trials (RCT) remains an ongoing challenge. Many previous prediction models rely on parametric assumptions. We present functions for non-parametric RCT recruitment prediction under several scenarios.
This package provides environment modules functionality, which enables use of the Environment Modules system (<http://modules.sourceforge.net/>) from within the R environment. By default the user's login shell environment (ie. "bash -l") will be used to initialize the current session. The module function can also; load or unload specific software, list all the loaded software within the current session, and list all the applications available for loading from the module system. Lastly, the module function can remove all loaded software from the current session.
This package provides a collection of R Markdown templates for nicely structured, reproducible data analyses in R. The templates have embedded examples on how to write citations, footnotes, equations and use colored message/info boxes, how to cross-reference different parts/sections in the report, provide a nice table of contents (toc) with a References section and proper R session information as well as examples using DT tables and ggplot2 graphs. The bookdown Lite template theme supports code folding.
Tu & Zhou (1999) <doi:10.1002/(SICI)1097-0258(19991030)18:20%3C2749::AID-SIM195%3E3.0.CO;2-C> showed that comparing the means of populations whose data-generating distributions are non-negative with excess zero observations is a problem of great importance in the analysis of medical cost data. In the same study, Tu & Zhou discuss that it can be difficult to control type-I error rates of general-purpose statistical tests for comparing the means of these particular data sets. This package allows users to perform a modified bootstrap-based t-test that aims to better control type-I error rates in these situations.
This package provides a useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>.
Simple and fast tool for transforming phytosociological vegetation data into digital form for the following analysis. Danihelka, Chrtek, and Kaplan (2012, ISSN:00327786). Hennekens, and Schaminée (2001) <doi:10.2307/3237010>. Tichý (2002) <doi:10.1111/j.1654-1103.2002.tb02069.x>. Wickham, François, Henry, Müller (2022) <https://CRAN.R-project.org/package=dplyr>.
Efficient framework for ridge redundancy analysis (rrda), tailored for high-dimensional omics datasets where the number of predictors exceeds the number of samples. The method leverages Singular Value Decomposition (SVD) to avoid direct inversion of the covariance matrix, enhancing scalability and performance. It also introduces a memory-efficient storage strategy for coefficient matrices, enabling practical use in large-scale applications. The package supports cross-validation for selecting regularization parameters and reduced-rank dimensions, making it a robust and flexible tool for multivariate analysis in omics research. Please refer to our article (Yoshioka et al., 2025) for more details.
This package provides a set of functions to facilitate building formatted strings under various replacement rules: C-style formatting, variable-based formatting, and number-based formatting. C-style formatting is basically identical to built-in function sprintf'. Variable-based formatting allows users to put variable names in a formatted string which will be replaced by variable values. Number-based formatting allows users to use index numbers to represent the corresponding argument value to appear in the string.
This package provides functions to assist manipulation of matrix row and column labels for all types of matrix mathematics where row and column labels are to be respected.
The RQuantLib package makes parts of QuantLib accessible from R The QuantLib project aims to provide a comprehensive software framework for quantitative finance. The goal is to provide a standard open source library for quantitative analysis, modeling, trading, and risk management of financial assets.
This package provides a port of the C++ routine for applying the marching cubes algorithm written by Thomas Lewiner et al. (2012) <doi:10.1080/10867651.2003.10487582> into an R package. The package supplies the contour3d() function, which takes a 3-dimensional array of voxel data and calculates the vertices, vertex normals, and faces for a 3d mesh representing the contour(s) at a given level.
The goal of Rigma is to provide a user friendly client to the Figma API <https://www.figma.com/developers/api>. It uses the latest `httr2` for a stable interface with the REST API. More than 20 methods are provided to interact with Figma files, and teams. Get design data into R by reading published components and styles, converting and downloading images, getting access to the full Figma file as a hierarchical data structure, and much more. Enhance your creativity and streamline the application development by automating the extraction, transformation, and loading of design data to your applications and HTML documents.
An HTTP API client for Lemmy (<https://github.com/LemmyNet/lemmy>) in R. Code and documentation are generated from the official JavaScript client source (<https://github.com/LemmyNet/lemmy-js-client>).