Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements various win ratio methodologies for composite endpoints of death and non-fatal events, including the (stratified) proportional win-fractions (PW) regression models (Mao and Wang, 2020 <doi:10.1111/biom.13382>), (stratified) two-sample tests with possibly recurrent nonfatal event, and sample size calculation for standard win ratio test (Mao et al., 2021 <doi:10.1111/biom.13501>).
Wavelet analysis and reconstruction of time series, cross-wavelets and phase-difference (with filtering options), significance with simulation algorithms.
This package provides a set of functions to implement decision-making systems based on the W.A.S.P.A.S. method (Weighted Aggregated Sum Product Assessment), Chakraborty and Zavadskas (2012) <doi:10.5755/j01.eee.122.6.1810>. So this package offers functions that analyze and validate the raw data, which must be entered in a determined format; extract specific vectors and matrices from this raw database; normalize the input data; calculate rankings by intermediate methods; apply the lambda parameter for the main method; and a function that does everything at once. The package has an example database called choppers, with which the user can see how the input data should be organized so that everything works as recommended by the decision methods based on multiple criteria that this package solves. Basically, the data are composed of a set of alternatives, which will be ranked, a set of choice criteria, a matrix of values for each Alternative-Criterion relationship, a vector of weights associated with the criteria, since certain criteria are considered more important than others, as well as a vector that defines each criterion as cost or benefit, this determines the calculation formula, as there are those criteria that we want the highest possible value (e.g. durability) and others that we want the lowest possible value (e.g. price).
This package provides a series of tools to compute and plot quantities related to classical and robust wavelet variance for time series and regular lattices. More details can be found, for example, in Serroukh, A., Walden, A.T., & Percival, D.B. (2000) <doi:10.2307/2669537> and Guerrier, S. & Molinari, R. (2016) <doi:10.48550/arXiv.1607.05858>.
Evaluation of alternatives based on multiple criteria using weighted technique for Order preference by similarity to an ideal solution method. Reference: Hwang CL. (1981, ISBN:978-3-540-10558-9).
This package provides tools for a wavelet-based approach to analyzing spatial synchrony, principally in ecological data. Some tools will be useful for studying community synchrony. See, for instance, Sheppard et al (2016) <doi: 10.1038/NCLIMATE2991>, Sheppard et al (2017) <doi: 10.1051/epjnbp/2017000>, Sheppard et al (2019) <doi: 10.1371/journal.pcbi.1006744>.
Access and analyze the World Bankâ s World Development Indicators (WDI) using the corresponding API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392-about-the-indicators-api-documentation>. WDI provides more than 24,000 country or region-level indicators for various contexts. wbwdi enables users to download, process and work with WDI series across multiple countries, aggregates, and time periods.
Students learning both econometrics and R may find the introduction to both challenging. The wooldridge data package aims to lighten the task by efficiently loading any data set found in the text with a single command. Data sets have been compressed to a fraction of their original size. Documentation files contain page numbers, the original source, time of publication, and notes from the author suggesting avenues for further analysis and research. If one needs an introduction to R model syntax, a vignette contains solutions to examples from chapters of the text. Data sets are from the 7th edition (Wooldridge 2020, ISBN-13 978-1-337-55886-0), and are backwards compatible with all previous versions of the text.
Allows to generate on-demand or by batch, any R documentation file, whatever is kind, data, function, class or package. It populates documentation sections, either automatically or by considering your input. Input code could be standard R code or offensive programming code. Documentation content completeness depends on the type of code you use. With offensive programming code, expect generated documentation to be fully completed, from a format and content point of view. With some standard R code, you will have to activate post processing to fill-in any section that requires complements. Produced manual page validity is automatically tested against R documentation compliance rules. Documentation language proficiency, wording style, and phrasal adjustments remains your job.
Fetch and clean data from the World Database on Protected Areas (WDPA) and the World Database on Other Effective Area-Based Conservation Measures (WDOECM). Data is obtained from Protected Planet <https://www.protectedplanet.net/en>. To augment data cleaning procedures, users can install the prepr R package (available at <https://github.com/prioritizr/prepr>). For more information on this package, see Hanson (2022) <doi:10.21105/joss.04594>.
Encapsulates the pattern of untidying data into a wide matrix, performing some processing, then turning it back into a tidy form. This is useful for several operations such as co-occurrence counts, correlations, or clustering that are mathematically convenient on wide matrices.
Supplies permutation-test alternatives to traditional hypothesis-test procedures such as two-sample tests for means, medians, and standard deviations; correlation tests; tests for homogeneity and independence; and more. Suitable for general audiences, including individual and group users, introductory statistics courses, and more advanced statistics courses that desire an introduction to permutation tests.
Weighted descriptive statistics is the discipline of quantitatively describing the main features of real-valued fuzzy data which usually given from a fuzzy population. One can summarize this special kind of fuzzy data numerically or graphically using this package. To interpret some of the properties of one or several sets of real-valued fuzzy data, numerically summarize is possible by some weighted statistics which are designed in this package such as mean, variance, covariance and correlation coefficent. Also, graphically interpretation can be given by weighted histogram and weighted scatter plot using this package to describe properties of real-valued fuzzy data set.
This package provides efficient implementation of the Wild Binary Segmentation and Binary Segmentation algorithms for estimation of the number and locations of multiple change-points in the piecewise constant function plus Gaussian noise model.
Top-Down mass spectrometry aims to identify entire proteins as well as their (post-translational) modifications or ions bound (eg Chen et al (2018) <doi:10.1021/acs.analchem.7b04747>). The pattern of internal fragments (Haverland et al (2017) <doi:10.1007/s13361-017-1635-x>) may reveal important information about the original structure of the proteins studied (Skinner et al (2018) <doi:10.1038/nchembio.2515> and Li et al (2018) <doi:10.1038/nchem.2908>). However, the number of possible internal fragments gets huge with longer proteins and subsequent identification of internal fragments remains challenging, in particular since the the accuracy of measurements with current mass spectrometers represents a limiting factor. This package attempts to deal with the complexity of internal fragments and allows identification of terminal and internal fragments from deconvoluted mass-spectrometry data.
The wavelet and ANN technique have been combined to reduce the effect of data noise. This wavelet-ANN conjunction model is able to forecast time series data with better accuracy than the traditional time series model. This package fits hybrid Wavelet ANN model for time series forecasting using algorithm by Anjoy and Paul (2017) <DOI: 10.1007/s00521-017-3289-9>.
This package provides functions aiming to facilitate the analysis of the structure of animal acoustic signals in R'. warbleR makes use of the basic sound analysis tools from the packages tuneR and seewave', and offers new tools for exploring and quantifying acoustic signal structure. The package allows to organize and manipulate multiple sound files, create spectrograms of complete recordings or individual signals in different formats, run several measures of acoustic structure, and characterize different structural levels in acoustic signals (Araya-Salas et al 2016 <doi:10.1111/2041-210X.12624>).
Adds ... to a function's argument list so that it can tolerate non-matching arguments.
This package provides functions for determining the effect of data weights on the variance of survey data: users will load a data set which has a weights column, and the package will calculate the design effect (DEFF), weighting loss, root design effect (DEFT), effective sample size (ESS), and/or weighted margin of error.
This package provides a set of functions to make tracking the hidden movements of the Jack player easier. By tracking every possible path Jack might have traveled from the point of the initial murder including special movement such as through alleyways and via carriages, the police can more accurately narrow the field of their search. Additionally, by tracking all possible hideouts from round to round, rounds 3 and 4 should have a vastly reduced field of search.
Treemaps are a visually appealing graphical representation of numerical data using a space-filling approach. A plane or map is subdivided into smaller areas called cells. The cells in the map are scaled according to an underlying metric which allows to grasp the hierarchical organization and relative importance of many objects at once. This package contains two different implementations of treemaps, Voronoi treemaps and Sunburst treemaps. The Voronoi treemap function subdivides the plot area in polygonal cells according to the highest hierarchical level, then continues to subdivide those parental cells on the next lower hierarchical level, and so on. The Sunburst treemap is a computationally less demanding treemap that does not require iterative refinement, but simply generates circle sectors that are sized according to predefined weights. The Voronoi tesselation is based on functions from Paul Murrell (2012) <https://www.stat.auckland.ac.nz/~paul/Reports/VoronoiTreemap/voronoiTreeMap.html>.
The german Wikibook "GNU R" introduces R to new users. This package is a collection of functions and datas used in the german WikiBook "GNU R".
Estimates high-dimensional multivariate normal copula regression models with the weighted composite likelihood estimating equations in Nikoloulopoulos (2023) <doi:10.1016/j.csda.2022.107654>. It provides autoregressive moving average correlation structures and binary, ordinal, Poisson, and negative binomial regressions.
This package implements the diagnostic "theta" developed in Poetscher and Preinerstorfer (2020) "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?" <arXiv:2005.04089>. This diagnostic can be used to detect and weed out bootstrap-based procedures that provably have size equal to one for a given testing problem. The implementation covers a large variety of bootstrap-based procedures, cf. the above mentioned article for details. A function for computing bootstrap p-values is provided.