Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Connect to the Adobe Analytics API v2.0 <https://github.com/AdobeDocs/analytics-2.0-apis> which powers Analysis Workspace'. The package was developed with the analyst in mind, and it will continue to be developed with the guiding principles of iterative, repeatable, timely analysis.
Formatter functions in the apa package take the return value of a statistical test function, e.g. a call to chisq.test() and return a string formatted according to the guidelines of the APA (American Psychological Association).
This package provides a toolbox for programming Clinical Data Standards Interchange Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R. ADaM datasets are a mandatory part of any New Drug or Biologics License Application submitted to the United States Food and Drug Administration (FDA). Analysis derivations are implemented in accordance with the "Analysis Data Model Implementation Guide" (CDISC Analysis Data Model Team, 2021, <https://www.cdisc.org/standards/foundational/adam>). The package is an extension package of the admiral package focusing on the metabolism therapeutic area.
Fetching data from Amazon Kinesis Streams using the Java-based MultiLangDaemon interacting with Amazon Web Services ('AWS') for easy stream processing from R. For more information on Kinesis', see <https://aws.amazon.com/kinesis>.
Flexible multi-environment trials analysis via MCMC method for Additive Main Effects and Multiplicative Model (AMMI) for continuous data. Biplot with the averages and regions of confidence can be generated. The chains run in parallel on Linux systems and run serially on Windows.
Grafts the extinct bird species from the Avotrex database (Sayol et al., in review) on to the BirdTree phylogenies <https://birdtree.org>, using a set of different commands.
Package for the access and distribution of Long-term lake datasets from lakes in the Adirondack Park, northern New York state. Includes a wide variety of physical, chemical, and biological parameters from 28 lakes. Data are from multiple collection organizations and have been harmonized in both time and space for ease of reuse.
This package provides a method for automatic detection of peaks in noisy periodic and quasi-periodic signals. This method, called automatic multiscale-based peak detection (AMPD), is based on the calculation and analysis of the local maxima scalogram, a matrix comprising the scale-dependent occurrences of local maxima. For further information see <doi:10.3390/a5040588>.
This package implements several basic algorithms for estimating regression parameters for semiparametric accelerated failure time (AFT) model. The main methods are: Jin rank-based method (Jin (2003) <doi:10.1093/biomet/90.2.341>), HellerĂ¢ s estimating method (Heller (2012) <doi:10.1198/016214506000001257>), Polynomial smoothed Gehan function method (Chung (2013) <doi:10.1007/s11222-012-9333-9>), Buckley-James method (Buckley (1979) <doi:10.2307/2335161>) and Jin`s improved least squares method (Jin (2006) <doi:10.1093/biomet/93.1.147>). This package can be used for modeling right-censored data and for comparing different estimation algorithms.
When many possible multiplier method estimates of a target population are available, a weighted sum of estimates from each back-calculated path can be achieved with this package. Variance-minimizing weights are used and with any admissible tree-structured data. The methodological basis used to create this package can be found in Flynn (2023) <http://hdl.handle.net/2429/86174>.
This package implements the alternating k-means biclustering algorithm in Fraiman and Li (2020) <arXiv:2009.04550>.
This package provides a set of functions for interacting with the DigitalOcean API <https://www.digitalocean.com/>, including creating images, destroying them, rebooting, getting details on regions, and available images.
This package provides several methods for aggregating probabilistic forecasts. You have a group of people who have made probabilistic forecasts for the same event. You want to take advantage of the "wisdom of the crowd" and combine these forecasts in some sensible way. This package provides implementations of several strategies, including geometric mean of odds, an extremized aggregate (Neyman, Roughgarden (2021) <doi:10.1145/3490486.3538243>), and "high-density trimmed mean" (Powell et al. (2022) <doi:10.1037/dec0000191>).
Accompanies the book "Designing experiments and analyzing data: A model comparison perspective" (3rd ed.) by Maxwell, Delaney, & Kelley (2018; Routledge). Contains all of the data sets in the book's chapters and end-of-chapter exercises. Information about the book is available at <https://designingexperiments.com/>.
An interface to Azure CosmosDB': <https://azure.microsoft.com/en-us/services/cosmos-db/>. On the admin side, AzureCosmosR provides functionality to create and manage Cosmos DB instances in Microsoft's Azure cloud. On the client side, it provides an interface to the Cosmos DB SQL API, letting the user store and query documents and attachments in Cosmos DB'. Part of the AzureR family of packages.
Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results. See Stringer (2021). "Implementing Adaptive Quadrature for Bayesian Inference: the aghq Package" <arXiv:2101.04468>.
Package that simulates adaptive (multi-arm, multi-stage) clinical trials using adaptive stopping, adaptive arm dropping, and/or adaptive randomisation. Developed as part of the INCEPT (Intensive Care Platform Trial) project (<https://incept.dk/>), primarily supported by a grant from Sygeforsikringen "danmark" (<https://www.sygeforsikring.dk/>).
Geographic, use, and property related data on airports.
Simulates, fits, and predicts long-memory and anti-persistent time series, possibly mixed with ARMA, regression, transfer-function components. Exact methods (MLE, forecasting, simulation) are used. Bug reports should be done via GitHub (at <https://github.com/JQVeenstra/arfima>), where the development version of this package lives; it can be installed using devtools.
Automated generation, running, and interpretation of moderated nonlinear factor analysis models for obtaining scores from observed variables, using the method described by Gottfredson and colleagues (2019) <doi:10.1016/j.addbeh.2018.10.031>. This package creates M-plus input files which may be run iteratively to test two different types of covariate effects on items: (1) latent variable impact (both mean and variance); and (2) differential item functioning. After sequentially testing for all effects, it also creates a final model by including all significant effects after adjusting for multiple comparisons. Finally, the package creates a scoring model which uses the final values of parameter estimates to generate latent variable scores. \n\n This package generates TEMPLATES for M-plus inputs, which can and should be inspected, altered, and run by the user. In addition to being presented without warranty of any kind, the package is provided under the assumption that everyone who uses it is reading, interpreting, understanding, and altering every M-plus input and output file. There is no one right way to implement moderated nonlinear factor analysis, and this package exists solely to save users time as they generate M-plus syntax according to their own judgment.
This package provides methods for fitting the Mixture of Factor Analyzers (MFA) model automatically. The MFA model is a mixture model where each sub-population is assumed to follow the Factor Analysis model. The Factor Analysis (FA) model is a latent variable model which assumes that observations are normally distributed, but imposes constraints on their covariance matrix. The MFA model contains two hyperparameters; g (the number of components in the mixture) and q (the number of factors in each component Factor Analysis model). Usually, the Expectation-Maximisation algorithm would be used to fit the MFA model, but this requires g and q to be known. This package treats g and q as unknowns and provides several methods which infer these values with as little input from the user as possible.
The functions defined in this program serve for implementing adaptive two-stage tests. Currently, four tests are included: Bauer and Koehne (1994), Lehmacher and Wassmer (1999), Vandemeulebroecke (2006), and the horizontal conditional error function. User-defined tests can also be implemented. Reference: Vandemeulebroecke, An investigation of two-stage tests, Statistica Sinica 2006.
Allows access to the data found in the species list featured in the renowned List of the Birds of Peru Plenge, M. A. (2023) <https://sites.google.com/site/boletinunop/checklist>. This publication stands as one of Peru's most comprehensive reviews of bird diversity. The dataset incorporates detailed species accounts and has been meticulously structured for effortless utilization within the R environment.
Allows you to connect to an Alfresco content management repository and interact with its contents using simple and intuitive functions. You will be able to establish a connection session to the Alfresco repository, read and upload content and manage folder hierarchies. For more details on the Alfresco content management repository see <https://www.alfresco.com/ecm-software/document-management>.