Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools to compute the Generalized Measure of Correlation (GMC), a dependence measure accounting for nonlinearity and asymmetry in the relationship between variables. Based on the method proposed by Zheng, Shi, and Zhang (2012) <doi:10.1080/01621459.2012.710509>.
An extension of ggplot2 that makes it easy to add raw grid output, such as customised annotations, to a ggplot2 plot.
Toolset to create perpendicular profile graphs and swath profiles. Method are based on coordinate rotation algorithm by Schaeben et al. (2024) <doi:10.1002/mma.9823>.
This package provides functions for estimating a GARCHSK model and GJRSK model based on a publication by Leon et,al (2005)<doi:10.1016/j.qref.2004.12.020> and Nakagawa and Uchiyama (2020)<doi:10.3390/math8111990>. These are a GARCH-type model allowing for time-varying volatility, skewness and kurtosis.
This package provides a general, flexible framework for estimating parameters and empirical sandwich variance estimator from a set of unbiased estimating equations (i.e., M-estimation in the vein of Stefanski & Boos (2002) <doi:10.1198/000313002753631330>). All examples from Stefanski & Boos (2002) are published in the corresponding Journal of Statistical Software paper "The Calculus of M-Estimation in R with geex" by Saul & Hudgens (2020) <doi:10.18637/jss.v092.i02>. Also provides an API to compute finite-sample variance corrections.
Robust Estimation of Multivariate Location and Scatter in the Presence of Cellwise and Casewise Contamination and Missing Data.
Reads annual and quarterly financial reports from companies traded at B3, the Brazilian exchange <https://www.b3.com.br/>. All data is downloaded and imported from CVM's public ftp site <https://dados.cvm.gov.br/dados/CIA_ABERTA/>.
This package provides a collection of several geoms to create graphics, using ggplot2 and the Cartesian coordinate system. You use the familiar mapping Grammar of Graphics without the need to do another transformation into polar coordinates.
Integrates game theory and ecological theory to construct social-ecological models that simulate the management of populations and stakeholder actions. These models build off of a previously developed management strategy evaluation (MSE) framework to simulate all aspects of management: population dynamics, manager observation of populations, manager decision making, and stakeholder responses to management decisions. The newly developed generalised management strategy evaluation (GMSE) framework uses genetic algorithms to mimic the decision-making process of managers and stakeholders under conditions of change, uncertainty, and conflict. Simulations can be run using gmse(), gmse_apply(), and gmse_gui() functions.
Facilitate reporting for regression and correlation modeling, hypothesis testing, variance analysis, outlier detection, and detailed descriptive statistics.
Workbench for testing genomic regression accuracy on (optionally noisy) phenotypes.
The geographical complexity of individual variables can be characterized by the differences in local attribute variables, while the common geographical complexity of multiple variables can be represented by fluctuations in the similarity of vectors composed of multiple variables. In spatial regression tasks, the goodness of fit can be improved by incorporating a geographical complexity representation vector during modeling, using a geographical complexity-weighted spatial weight matrix, or employing local geographical complexity kernel density. Similarly, in spatial sampling tasks, samples can be selected more effectively by using a method that weights based on geographical complexity. By optimizing performance in spatial regression and spatial sampling tasks, the spatial bias of the model can be effectively reduced.
This package provides a function that generates a customized correlation matrix based on limit values and proportions for intervals composed by its limits. It can also generate random matrices with low, medium, and high correlations, in which low, medium, and high thresholds are user-defined.
Accurate and computationally efficient p-value calculation methods for a general family of Fisher type statistics (GFisher). The GFisher covers Fisher's combination, Good's statistic, Lancaster's statistic, weighted Z-score combination, etc. It allows a flexible weighting scheme, as well as an omnibus procedure that automatically adapts proper weights and degrees of freedom to a given data. The new p-value calculation methods are based on novel ideas of moment-ratio matching and joint-distribution approximation. The technical details can be found in Hong Zhang and Zheyang Wu (2020) <arXiv:2003.01286>.
Cross validation informed Relaxed LASSO (or more generally elastic net), gradient boosting machine ('xgboost'), Random Forest ('RandomForestSRC'), Oblique Random Forest ('aorsf'), Artificial Neural Network (ANN), Recursive Partitioning ('RPART') or step wise regression models are fit. Cross validation leave out samples (leading to nested cross validation) or bootstrap out-of-bag samples are used to evaluate and compare performances between these models with results presented in tabular or graphical means. Calibration plots can also be generated, again based upon (outer nested) cross validation or bootstrap leave out (out of bag) samples. Note, at the time of this writing, in order to fit gradient boosting machine models one must install the packages DiceKriging and rgenoud using the install.packages() function. For some datasets, for example when the design matrix is not of full rank, glmnet may have very long run times when fitting the relaxed lasso model, from our experience when fitting Cox models on data with many predictors and many patients, making it difficult to get solutions from either glmnet() or cv.glmnet(). This may be remedied by using the path=TRUE option when calling glmnet() and cv.glmnet(). Within the glmnetr package the approach of path=TRUE is taken by default. other packages doing similar include nestedcv <https://cran.r-project.org/package=nestedcv>, glmnetSE <https://cran.r-project.org/package=glmnetSE> which may provide different functionality when performing a nested CV. Use of the glmnetr has many similarities to the glmnet package and it could be helpful for the user of glmnetr also become familiar with the glmnet package <https://cran.r-project.org/package=glmnet>, with the "An Introduction to glmnet'" and "The Relaxed Lasso" being especially useful in this regard.
This package implements a flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology following Cannon (2010) <doi:10.1002/hyp.7506>.
This package provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>.
Fits Weighted Quantile Sum (WQS) regression (Carrico et al. (2014) <doi:10.1007/s13253-014-0180-3>), a random subset implementation of WQS (Curtin et al. (2019) <doi:10.1080/03610918.2019.1577971>), a repeated holdout validation WQS (Tanner et al. (2019) <doi:10.1016/j.mex.2019.11.008>) and a WQS with 2 indices (Renzetti et al. (2023) <doi:10.3389/fpubh.2023.1289579>) for continuous, binomial, multinomial, Poisson, quasi-Poisson and negative binomial outcomes.
An (aspirational) collection of additional geometries and statistics for ggplot2'.
This package provides tools to assist planning and monitoring of time-to-event trials under complicated censoring assumptions and/or non-proportional hazards. There are three main components: The first is analytic calculation of predicted time-to-event trial properties, providing estimates of expected hazard ratio, event numbers and power under different analysis methods. The second is simulation, allowing stochastic estimation of these same properties. Thirdly, it provides parametric event prediction using blinded trial data, including creation of prediction intervals. Methods are based upon numerical integration and a flexible object-orientated structure for defining event, censoring and recruitment distributions (Curves).
This package provides a Bayesian statistical model for estimating child (under-five age group) and adult (15-60 age group) mortality. The main challenge is how to combine and integrate these different time series and how to produce unified estimates of mortality rates during a specified time span. GPR is a Bayesian statistical model for estimating child and adult mortality rates which its data likelihood is mortality rates from different data sources such as: Death Registration System, Censuses or surveys. There are also various hyper-parameters for completeness of DRS, mean, covariance functions and variances as priors. This function produces estimations and uncertainty (95% or any desirable percentiles) based on sampling and non-sampling errors due to variation in data sources. The GP model utilizes Bayesian inference to update predicted mortality rates as a posterior in Bayes rule by combining data and a prior probability distribution over parameters in mean, covariance function, and the regression model. This package uses Markov Chain Monte Carlo (MCMC) to sample from posterior probability distribution by rstan package in R. Details are given in Wang H, Dwyer-Lindgren L, Lofgren KT, et al. (2012) <doi:10.1016/S0140-6736(12)61719-X>, Wang H, Liddell CA, Coates MM, et al. (2014) <doi:10.1016/S0140-6736(14)60497-9> and Mohammadi, Parsaeian, Mehdipour et al. (2017) <doi:10.1016/S2214-109X(17)30105-5>.
Neural networks are applied to create a density value function which approximates density values for a data source. The trained neural network is analyzed for different levels. For each level metric subspaces with density values above a level are determined. The obtained set of metric subspaces and the trained neural network are assembled into a data model. A prerequisite is the definition of a data source, the generation of generative data and the calculation of density values. These tasks are executed using package ganGenerativeData <https://cran.r-project.org/package=ganGenerativeData>.
Simulation of, and fitting models for, Generalised Network Autoregressive (GNAR) time series models which take account of network structure, potentially with exogenous variables. Such models are described in Knight et al. (2020) <doi:10.18637/jss.v096.i05> and Nason and Wei (2021) <doi:10.1111/rssa.12875>. Diagnostic tools for GNAR(X) models can be found in Nason et al. (2023) <doi:10.48550/arXiv.2312.00530>.
Send error reports to the Google Error Reporting service <https://cloud.google.com/error-reporting/> and view errors and assign error status in the Google Error Reporting user interface.