Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An RStudio Addin wrapper for the mergen package. This package employs artificial intelligence to convert data analysis questions into executable code, explanations, and algorithms. This package makes it easier to use Large Language Models in your development environment by providing a chat-like interface, while also allowing you to inspect and execute the returned code.
Multivariate generalized Gaussian distribution, Multivariate Cauchy distribution, Multivariate t distribution. Distance between two distributions (see N. Bouhlel and A. Dziri (2019): <doi:10.1109/LSP.2019.2915000>, N. Bouhlel and D. Rousseau (2022): <doi:10.3390/e24060838>, N. Bouhlel and D. Rousseau (2023): <doi:10.1109/LSP.2023.3324594>). Manipulation of these multivariate probability distributions. This package replaces mggd', mcauchyd and mstudentd'.
To assess a summary survival curve from survival probabilities and number of at-risk patients collected at various points in time in various studies, and to test the between-strata heterogeneity.
Implementation of Multidimensional Top Scoring method for creativity assessment proposed in Boris Forthmann, Maciej Karwowski, Roger E. Beaty (2023) <doi:10.1037/aca0000571>.
Send server-side tracking data from R. The Measurement Protocol version 2 <https://developers.google.com/analytics/devguides/collection/protocol/ga4> allows sending HTTP tracking events from R code.
Supply functions for the creation and handling of missing data as well as tools to evaluate missing data methods. Nearly all possibilities of generating missing data discussed by Santos et al. (2019) <doi:10.1109/ACCESS.2019.2891360> and some additional are implemented. Functions are supplied to compare parameter estimates and imputed values to true values to evaluate missing data methods. Evaluations of these types are done, for example, by Cetin-Berber et al. (2019) <doi:10.1177/0013164418805532> and Kim et al. (2005) <doi:10.1093/bioinformatics/bth499>.
This package implements order selection for Vector Autoregressive (VAR) models using the Mean Square Information Criterion (MIC). Unlike standard methods such as AIC and BIC, MIC is likelihood-free. This method consistently estimates VAR order and has robust performance under model misspecification. For more details, see Hellstern and Shojaie (2025) <doi:10.48550/arXiv.2511.19761>.
Utility functions for mutational signature analysis as described in Alexandrov, L. B. (2020) <doi:10.1038/s41586-020-1943-3>. This package provides two groups of functions. One is for dealing with mutational signature "exposures" (i.e. the counts of mutations in a sample that are due to each mutational signature). The other group of functions is for matching or comparing sets of mutational signatures. mSigTools stands for mutational Signature analysis Tools.
This package implements two methods: a nonparametric risk adjustment and a data imputation method that use general population mortality tables to allow a correct analysis of time to disease recurrence. Also includes a powerful set of object oriented survival data simulation functions.
Dimension reduction for multivariate data of extreme events with a PCA like procedure as described in Reinbott, Janà en, (2024), <doi:10.48550/arXiv.2408.10650>. Tools for necessary transformations of the data are provided.
Simultaneously estimates sparse regression coefficients and response network structure in multivariate models with missing data. Unlike traditional approaches requiring imputation, handles missingness natively through unbiased estimating equations (MCAR/MAR compatible). Employs dual L1 regularization with automated selection via cross-validation or information criteria. Includes parallel computation, warm starts, adaptive grids, publication-ready visualizations, and prediction methods. Ideal for genomics, neuroimaging, and multi-trait studies with incomplete high-dimensional outcomes. See Zeng et al. (2025) <doi:10.48550/arXiv.2507.05990>.
An implementation of the Monte Carlo techniques described in details by Dufour (2006) <doi:10.1016/j.jeconom.2005.06.007> and Dufour and Khalaf (2007) <doi:10.1002/9780470996249.ch24>. The two main features available are the Monte Carlo method with tie-breaker, mc(), for discrete statistics, and the Maximized Monte Carlo, mmc(), for statistics with nuisance parameters.
This package provides functions to calculate Unique Trait Combinations (UTC) and scaled Unique Trait Combinations (sUTC) as measures of multivariate richness. The package can also calculate beta-diversity for trait richness and can partition this into nestedness-related and turnover components. The code will also calculate several measures of overlap. See Keyel and Wiegand (2016) <doi:10.1111/2041-210X.12558> for more details.
This package contains functions that allow Bayesian meta-analysis (1) with binomial data, counts(y) and total counts (n) or, (2) with user-supplied point estimates and associated variances. Case (1) provides an analysis based on the logit transformation of the sample proportion. This methodology is also appropriate for combining data from sample surveys and related sources. The functions can calculate the corresponding similarity matrix. More details can be found in Cahoy and Sedransk (2023), Cahoy and Sedransk (2022) <doi:10.1007/s42519-018-0027-2>, Evans and Sedransk (2001) <doi:10.1093/biomet/88.3.643>, and Malec and Sedransk (1992) <doi:10.1093/biomet/79.3.593>.
This package provides a fast, robust and easy-to-use calculation of multi-class classification evaluation metrics based on confusion matrix.
This package implements methods for processing a sample of (hard) clusterings, e.g. the MCMC output of a Bayesian clustering model. Among them are methods that find a single best clustering to represent the sample, which are based on the posterior similarity matrix or a relabelling algorithm.
The mFilter package implements several time series filters useful for smoothing and extracting trend and cyclical components of a time series. The routines are commonly used in economics and finance, however they should also be interest to other areas. Currently, Christiano-Fitzgerald, Baxter-King, Hodrick-Prescott, Butterworth, and trigonometric regression filters are included in the package.
This is a companion to the book Cook, D. and Laa, U. (2023) <https://dicook.github.io/mulgar_book/> "Interactively exploring high-dimensional data and models in R". by Cook and Laa. It contains useful functions for processing data in preparation for visualising with a tour. There are also several sample data sets.
Fit finite mixture distribution models to grouped data and conditional data by maximum likelihood using a combination of a Newton-type algorithm and the EM algorithm.
The goal of mammalcol is to provide easy access to a meticulously structured dataset of Colombian mammal species in R. The 2025 update includes comprehensive, detailed species accounts, and distribution information.
This package provides methods and models for analysing multigraphs as introduced by Shafie (2015) <doi:10.21307/joss-2019-011>, including methods to study local and global properties <doi:10.1080/0022250X.2016.1219732> and goodness of fit tests.
Estimation of treatment hierarchies in network meta-analysis using a novel frequentist approach based on treatment choice criteria (TCC) and probabilistic ranking models, as described by Evrenoglou et al. (2024) <DOI:10.48550/arXiv.2406.10612>. The TCC are defined using a rule based on the smallest worthwhile difference (SWD). Using the defined TCC, the NMA estimates (i.e., treatment effects and standard errors) are first transformed into treatment preferences, indicating either a treatment preference (e.g., treatment A > treatment B) or a tie (treatment A = treatment B). These treatment preferences are then synthesized using a probabilistic ranking model, which estimates the latent ability parameter of each treatment and produces the final treatment hierarchy. This parameter represents each treatments ability to outperform all the other competing treatments in the network. Here the terms ability to outperform indicates the propensity of each treatment to yield clinically important and beneficial effects when compared to all the other treatments in the network. Consequently, larger ability estimates indicate higher positions in the ranking list.
Gibbs sampler for fitting multivariate Bayesian linear regression with shrinkage priors (MBSP), using the three parameter beta normal family. The method is described in Bai and Ghosh (2018) <doi:10.1016/j.jmva.2018.04.010>.
Testing CRAN and Bioconductor mirror speed by recording download time of src/base/COPYING (for CRAN) and packages/release/bioc/html/ggtree.html (for Bioconductor).