Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides an integrated pipeline for the analysis of PAR-CLIP data. PAR-CLIP-induced transitions are first discriminated from sequencing errors, SNPs and additional non-experimental sources by a non- parametric mixture model. The protein binding sites (clusters) are then resolved at high resolution and cluster statistics are estimated using a rigorous Bayesian framework. Post-processing of the results, data export for UCSC genome browser visualization and motif search analysis are provided. In addition, the package integrates RNA-Seq data to estimate the False Discovery Rate of cluster detection. Key functions support parallel multicore computing. While wavClusteR was designed for PAR-CLIP data analysis, it can be applied to the analysis of other NGS data obtained from experimental procedures that induce nucleotide substitutions (e.g. BisSeq).
This package contains default datasets used by the Bioconductor package biscuiteer.
This package implements methods to analyze and visualize functional profiles (GO and KEGG) of gene and gene clusters.
This package implements transcript quantification import from Salmon and alevin with automatic attachment of transcript ranges and release information, and other associated metadata. De novo transcriptomes can be linked to the appropriate sources with linkedTxomes and shared for computational reproducibility.
The package alpine helps to model bias parameters and then using those parameters to estimate RNA-seq transcript abundance. Alpine is a package for estimating and visualizing many forms of sample-specific biases that can arise in RNA-seq, including fragment length distribution, positional bias on the transcript, read start bias (random hexamer priming), and fragment GC-content (amplification). It also offers bias-corrected estimates of transcript abundance in FPKM(Fragments Per Kilobase of transcript per Million mapped reads). It is currently designed for un-stranded paired-end RNA-seq data.
This package provides full genome sequences for Caenorhabditis elegans (Worm) as provided by UCSC (ce10, Oct 2010) and stored in Biostrings objects.
MultiAssayExperiment harmonizes data management of multiple assays performed on an overlapping set of specimens. It provides a familiar Bioconductor user experience by extending concepts from SummarizedExperiment, supporting an open-ended mix of standard data classes for individual assays, and allowing subsetting by genomic ranges or rownames.
This package contains functions and classes that are needed by the arrayCGH packages.
This package provides methods for microarray analysis that take basic data types such as matrices and lists of vectors. These methods can be used standalone, be utilized in other packages, or be wrapped up in higher-level classes.
This package provides a package containing an environment representing the HG_U95Av2.CDF file.
Haplotype-aware Hidden Markov Model for RNA (HaHMMR) is a method for detecting copy number variations (CNVs) from bulk RNA-seq data. Additional examples, documentations, and details on the method are available at https://github.com/kharchenkolab/hahmmr/.
This package provides support for numerical and graphical summaries of RNA-Seq genomic read data. Provided within-lane normalization procedures to adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression, global-scaling, and full-quantile normalization. Between-lane normalization procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling and full-quantile normalization.
This package implements a method to analyze single-cell RNA-seq data utilizing flexible Dirichlet Process mixture models. Genes with differential distributions of expression are classified into several interesting patterns of differences between two conditions. The package also includes functions for simulating data with these patterns from negative binomial distributions.
The differences in the RNA types being sequenced have an impact on the resulting sequencing profiles. mRNA-seq data is enriched with reads derived from exons, while GRO-, nucRNA- and chrRNA-seq demonstrate a substantial broader coverage of both exonic and intronic regions. The presence of intronic reads in GRO-seq type of data makes it possible to use it to computationally identify and quantify all de novo continuous regions of transcription distributed across the genome. This type of data, however, is more challenging to interpret and less common practice compared to mRNA-seq. One of the challenges for primary transcript detection concerns the simultaneous transcription of closely spaced genes, which needs to be properly divided into individually transcribed units. The R package transcriptR combines RNA-seq data with ChIP-seq data of histone modifications that mark active Transcription Start Sites (TSSs), such as, H3K4me3 or H3K9/14Ac to overcome this challenge. The advantage of this approach over the use of, for example, gene annotations is that this approach is data driven and therefore able to deal also with novel and case specific events.
This package provides full genome sequences for Caenorhabditis elegans (Worm) as provided by UCSC (ce6, May 2008) and stored in Biostrings objects.
This is a package for Differential Expression Analysis of RNA-seq data. It features a variance component score test accounting for data heteroscedasticity through precision weights. Perform both gene-wise and gene set analyses, and can deal with repeated or longitudinal data.
This package provides genome wide annotation for E coli strain K12, primarily based on mapping using Entrez Gene identifiers. Entrez Gene is National Center for Biotechnology Information (NCBI)’s database for gene-specific information. Entrez Gene maintains records from genomes which have been completely sequenced, which have an active research community to submit gene-specific information, or which are scheduled for intense sequence analysis.
GOfuncR performs a gene ontology enrichment analysis based on the ontology enrichment software FUNC. GO-annotations are obtained from OrganismDb or OrgDb packages (Homo.sapiens by default); the GO-graph is included in the package and updated regularly. GOfuncR provides the standard candidate vs background enrichment analysis using the hypergeometric test, as well as three additional tests:
the Wilcoxon rank-sum test that is used when genes are ranked,
a binomial test that is used when genes are associated with two counts, and
a Chi-square or Fisher's exact test that is used in cases when genes are associated with four counts.
To correct for multiple testing and interdependency of the tests, family-wise error rates are computed based on random permutations of the gene-associated variables. GOfuncR also provides tools for exploring the ontology graph and the annotations, and options to take gene-length or spatial clustering of genes into account. It is also possible to provide custom gene coordinates, annotations and ontologies.
This package lets you programmatically access the NIH/NCI Genomic Data Commons RESTful service.
This package implements a general and flexible zero-inflated negative binomial model that can be used to provide a low-dimensional representations of single-cell RNA-seq data. The model accounts for zero inflation (dropouts), over-dispersion, and the count nature of the data. The model also accounts for the difference in library sizes and optionally for batch effects and/or other covariates, avoiding the need for pre-normalize the data.
This package provides tools for quality control, analysis and visualization of Illumina DNA methylation array data.
This package provides a computational method that infers copy number variations (CNV) in cancer scRNA-seq data and reconstructs the tumor phylogeny. It integrates signals from gene expression, allelic ratio, and population haplotype structures to accurately infer allele-specific CNVs in single cells and reconstruct their lineage relationship. It does not require tumor/normal-paired DNA or genotype data, but operates solely on the donor scRNA-data data (for example, 10x Cell Ranger output). It can be used to:
detect allele-specific copy number variations from single-cells
differentiate tumor versus normal cells in the tumor microenvironment
infer the clonal architecture and evolutionary history of profiled tumors
For details on the method see Gao et al in Nature Biotechnology 2022.
The package contains functions to infer and visualize cell cycle process using Single-cell RNA-Seq data. It exploits the idea of transfer learning, projecting new data to the previous learned biologically interpretable space. The tricycle provides a pre-learned cell cycle space, which could be used to infer cell cycle time of human and mouse single cell samples. In addition, it also offer functions to visualize cell cycle time on different embeddings and functions to build new reference.
This package implements a variety of low-level analyses of single-cell RNA-seq data. Methods are provided for normalization of cell-specific biases, assignment of cell cycle phase, and detection of highly variable and significantly correlated genes.